These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 35499892)
1. Gravitational Perturbations of Rotating Black Holes in Lorenz Gauge. Dolan SR; Kavanagh C; Wardell B Phys Rev Lett; 2022 Apr; 128(15):151101. PubMed ID: 35499892 [TBL] [Abstract][Full Text] [Related]
2. Nonlinear Radiation Gauge for Near Kerr Spacetimes. Andersson L; Bäckdahl T; Blue P; Ma S Commun Math Phys; 2022; 396(1):45-90. PubMed ID: 36299831 [TBL] [Abstract][Full Text] [Related]
3. All Local Gauge Invariants for Perturbations of the Kerr Spacetime. Aksteiner S; Bäckdahl T Phys Rev Lett; 2018 Aug; 121(5):051104. PubMed ID: 30118292 [TBL] [Abstract][Full Text] [Related]
4. Gravitoelectromagnetic perturbations of Kerr-Newman black holes: stability and isospectrality in the slow-rotation limit. Pani P; Berti E; Gualtieri L Phys Rev Lett; 2013 Jun; 110(24):241103. PubMed ID: 25165905 [TBL] [Abstract][Full Text] [Related]
5. Simplified derivation of the gravitational wave stress tensor from the linearized Einstein field equations. Balbus SA Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11662-11666. PubMed ID: 27698143 [TBL] [Abstract][Full Text] [Related]
6. Linear mode stability of the Kerr-Newman black hole and its quasinormal modes. Dias ÓJ; Godazgar M; Santos JE Phys Rev Lett; 2015 Apr; 114(15):151101. PubMed ID: 25933301 [TBL] [Abstract][Full Text] [Related]
7. Boundedness and Decay for the Teukolsky Equation on Kerr Spacetimes I: The Case Dafermos M; Holzegel G; Rodnianski I Ann PDE; 2019; 5(1):2. PubMed ID: 31119213 [TBL] [Abstract][Full Text] [Related]
8. Methodological notes on gauge invariance in the treatment of waves and oscillations in plasmas via the Einstein-Vlasov-Maxwell system: Fundamental equations. Bourscheidt L; Haas F Phys Rev E; 2024 Aug; 110(2-2):025207. PubMed ID: 39294958 [TBL] [Abstract][Full Text] [Related]
9. Sources in the Weyl Double Copy. Easson DA; Manton T; Svesko A Phys Rev Lett; 2021 Dec; 127(27):271101. PubMed ID: 35061409 [TBL] [Abstract][Full Text] [Related]
10. Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory. Kleihaus B; Kunz J; Radu E Phys Rev Lett; 2011 Apr; 106(15):151104. PubMed ID: 21568543 [TBL] [Abstract][Full Text] [Related]
11. A radiating Kerr black hole and Hawking radiation. Chou YC Heliyon; 2020 Jan; 6(1):e03336. PubMed ID: 32051884 [TBL] [Abstract][Full Text] [Related]
12. Pragmatic approach to gravitational radiation reaction in binary black holes. Lousto CO Phys Rev Lett; 2000 Jun; 84(23):5251-4. PubMed ID: 10990916 [TBL] [Abstract][Full Text] [Related]
14. Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes. East WE; Pretorius F Phys Rev Lett; 2017 Jul; 119(4):041101. PubMed ID: 29341737 [TBL] [Abstract][Full Text] [Related]
15. Black holes, hidden symmetries, and complete integrability. Frolov VP; Krtouš P; Kubizňák D Living Rev Relativ; 2017; 20(1):6. PubMed ID: 29213211 [TBL] [Abstract][Full Text] [Related]
17. Metric Independence of Vacuum and Force-Free Electromagnetic Fields. Harte AI Phys Rev Lett; 2017 Apr; 118(14):141101. PubMed ID: 28430501 [TBL] [Abstract][Full Text] [Related]
18. Nonmodal linear stability of the Schwarzschild black hole. Dotti G Phys Rev Lett; 2014 May; 112(19):191101. PubMed ID: 24877924 [TBL] [Abstract][Full Text] [Related]
19. Extraction of gravitational waves in numerical relativity. Bishop NT; Rezzolla L Living Rev Relativ; 2016; 19(1):2. PubMed ID: 28190970 [TBL] [Abstract][Full Text] [Related]
20. Plunge waveforms from inspiralling binary black holes. Baker J; Brügmann B; Campanelli M; Lousto CO; Takahashi R Phys Rev Lett; 2001 Sep; 87(12):121103. PubMed ID: 11580497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]