These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35499893)

  • 21. Metastability and avalanche dynamics in strongly correlated gases with long-range interactions.
    Hruby L; Dogra N; Landini M; Donner T; Esslinger T
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3279-3284. PubMed ID: 29519875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cold atoms meet lattice gauge theory.
    Aidelsburger M; Barbiero L; Bermudez A; Chanda T; Dauphin A; González-Cuadra D; Grzybowski PR; Hands S; Jendrzejewski F; Jünemann J; Juzeliūnas G; Kasper V; Piga A; Ran SJ; Rizzi M; Sierra G; Tagliacozzo L; Tirrito E; Zache TV; Zakrzewski J; Zohar E; Lewenstein M
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210064. PubMed ID: 34923836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-cone-like spreading of correlations in a quantum many-body system.
    Cheneau M; Barmettler P; Poletti D; Endres M; Schauss P; Fukuhara T; Gross C; Bloch I; Kollath C; Kuhr S
    Nature; 2012 Jan; 481(7382):484-7. PubMed ID: 22281597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fractional Mott insulator-to-superfluid transition of Bose-Hubbard model in a trimerized Kagomé optical lattice.
    Chen QH; Li P; Su H
    J Phys Condens Matter; 2016 Jun; 28(25):256001. PubMed ID: 27165440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lieb-Robinson bound and locality for general markovian quantum dynamics.
    Poulin D
    Phys Rev Lett; 2010 May; 104(19):190401. PubMed ID: 20866947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genuine Many-Body Quantum Scars along Unstable Modes in Bose-Hubbard Systems.
    Hummel Q; Richter K; Schlagheck P
    Phys Rev Lett; 2023 Jun; 130(25):250402. PubMed ID: 37418734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables.
    Łącki M; Damski B; Zakrzewski J
    Sci Rep; 2016 Dec; 6():38340. PubMed ID: 27910915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Absence of a direct superfluid to mott insulator transition in disordered bose systems.
    Pollet L; Prokof'ev NV; Svistunov BV; Troyer M
    Phys Rev Lett; 2009 Oct; 103(14):140402. PubMed ID: 19905549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topological Bose-Mott insulators in a one-dimensional optical superlattice.
    Zhu SL; Wang ZD; Chan YH; Duan LM
    Phys Rev Lett; 2013 Feb; 110(7):075303. PubMed ID: 25166380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-density waves with neutral and charged dipolar excitons of GaAs bilayers.
    Lagoin C; Suffit S; Baldwin K; Pfeiffer L; Dubin F
    Nat Mater; 2023 Feb; 22(2):170-174. PubMed ID: 36482205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polaritons and pairing phenomena in Bose-Hubbard mixtures.
    Bhaseen MJ; Hohenadler M; Silver AO; Simons BD
    Phys Rev Lett; 2009 Apr; 102(13):135301. PubMed ID: 19392365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons.
    Haller E; Hart R; Mark MJ; Danzl JG; Reichsöllner L; Gustavsson M; Dalmonte M; Pupillo G; Nägerl HC
    Nature; 2010 Jul; 466(7306):597-600. PubMed ID: 20671704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deconfinement Dynamics of Fractons in Tilted Bose-Hubbard Chains.
    Boesl J; Zechmann P; Feldmeier J; Knap M
    Phys Rev Lett; 2024 Apr; 132(14):143401. PubMed ID: 38640374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooling and Autonomous Feedback in a Bose-Hubbard Chain with Attractive Interactions.
    Hacohen-Gourgy S; Ramasesh VV; De Grandi C; Siddiqi I; Girvin SM
    Phys Rev Lett; 2015 Dec; 115(24):240501. PubMed ID: 26705615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wannier permanent wave functions for featureless bosonic mott insulators on the 1/3-filled kagome lattice.
    Parameswaran SA; Kimchi I; Turner AM; Stamper-Kurn DM; Vishwanath A
    Phys Rev Lett; 2013 Mar; 110(12):125301. PubMed ID: 25166814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong coupling expansion for the Bose-Hubbard and Jaynes-Cummings lattice models.
    Heil C; von der Linden W
    J Phys Condens Matter; 2012 Jul; 24(29):295601. PubMed ID: 22738846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase transitions of the Kane-Mele-Hubbard model with a long-range hopping.
    Du T; Li YX; Lu HL; Zhang H
    J Phys Condens Matter; 2018 Nov; 30(47):475601. PubMed ID: 30378568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supersonic quantum communication.
    Eisert J; Gross D
    Phys Rev Lett; 2009 Jun; 102(24):240501. PubMed ID: 19658986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy redistribution and spatiotemporal evolution of correlations after a sudden quench of the Bose-Hubbard model.
    Takasu Y; Yagami T; Asaka H; Fukushima Y; Nagao K; Goto S; Danshita I; Takahashi Y
    Sci Adv; 2020 Sep; 6(40):. PubMed ID: 32998897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rigorous Results for the Ground States of the Spin-2 Bose-Hubbard Model.
    Yang H; Katsura H
    Phys Rev Lett; 2019 Feb; 122(5):053401. PubMed ID: 30822002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.