These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35499971)

  • 1. Incorporating Target-Specific Pharmacophoric Information into Deep Generative Models for Fragment Elaboration.
    Hadfield TE; Imrie F; Merritt A; Birchall K; Deane CM
    J Chem Inf Model; 2022 May; 62(10):2280-2292. PubMed ID: 35499971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target-Focused Library Design by Pocket-Applied Computer Vision and Fragment Deep Generative Linking.
    Eguida M; Schmitt-Valencia C; Hibert M; Villa P; Rognan D
    J Med Chem; 2022 Oct; 65(20):13771-13783. PubMed ID: 36256484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep generative design with 3D pharmacophoric constraints.
    Imrie F; Hadfield TE; Bradley AR; Deane CM
    Chem Sci; 2021 Nov; 12(43):14577-14589. PubMed ID: 34881010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.
    Radoux CJ; Olsson TS; Pitt WR; Groom CR; Blundell TL
    J Med Chem; 2016 May; 59(9):4314-25. PubMed ID: 27043011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Generative Models for 3D Linker Design.
    Imrie F; Bradley AR; van der Schaar M; Deane CM
    J Chem Inf Model; 2020 Apr; 60(4):1983-1995. PubMed ID: 32195587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design.
    Skalic M; Sabbadin D; Sattarov B; Sciabola S; De Fabritiis G
    Mol Pharm; 2019 Oct; 16(10):4282-4291. PubMed ID: 31437001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated generation of MCSS-derived pharmacophoric DOCK site points for searching multiconformation databases.
    Joseph-McCarthy D; Alvarez JC
    Proteins; 2003 May; 51(2):189-202. PubMed ID: 12660988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D molecular generative framework for interaction-guided drug design.
    Zhung W; Kim H; Kim WY
    Nat Commun; 2024 Mar; 15(1):2688. PubMed ID: 38538598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Epitope Mapping by STD NMR Spectroscopy To Reveal the Nature of Protein-Ligand Contacts.
    Monaco S; Tailford LE; Juge N; Angulo J
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15289-15293. PubMed ID: 28977722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review.
    Allen D; Gillen E; Rixson L
    JBI Libr Syst Rev; 2009; 7(3):80-129. PubMed ID: 27820426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FFLOM: A Flow-Based Autoregressive Model for Fragment-to-Lead Optimization.
    Jin J; Wang D; Shi G; Bao J; Wang J; Zhang H; Pan P; Li D; Yao X; Liu H; Hou T; Kang Y
    J Med Chem; 2023 Aug; 66(15):10808-10823. PubMed ID: 37471134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Library design and virtual screening using multiple 4-point pharmacophore fingerprints.
    Mason JS; Cheney DL
    Pac Symp Biocomput; 2000; ():576-87. PubMed ID: 10902205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All in One: Cavity Detection, Druggability Estimate, Cavity-Based Pharmacophore Perception, and Virtual Screening.
    Tran-Nguyen VK; Da Silva F; Bret G; Rognan D
    J Chem Inf Model; 2019 Jan; 59(1):573-585. PubMed ID: 30563339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative Topographic Mapping of the Docking Conformational Space.
    Horvath D; Marcou G; Varnek A
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31216756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph-based generative models for de Novo drug design.
    Xia X; Hu J; Wang Y; Zhang L; Liu Z
    Drug Discov Today Technol; 2019 Dec; 32-33():45-53. PubMed ID: 33386094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computer Vision Approach to Align and Compare Protein Cavities: Application to Fragment-Based Drug Design.
    Eguida M; Rognan D
    J Med Chem; 2020 Jul; 63(13):7127-7142. PubMed ID: 32496770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation.
    Loving K; Salam NK; Sherman W
    J Comput Aided Mol Des; 2009 Aug; 23(8):541-54. PubMed ID: 19421721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting target-ligand interactions using protein ligand-binding site and ligand substructures.
    Wang C; Liu J; Luo F; Deng Z; Hu QN
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S2. PubMed ID: 25707321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo design with deep generative models based on 3D similarity scoring.
    Papadopoulos K; Giblin KA; Janet JP; Patronov A; Engkvist O
    Bioorg Med Chem; 2021 Aug; 44():116308. PubMed ID: 34280849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extensive and diverse set of molecular overlays for the validation of pharmacophore programs.
    Giangreco I; Cosgrove DA; Packer MJ
    J Chem Inf Model; 2013 Apr; 53(4):852-66. PubMed ID: 23565904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.