These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35500024)

  • 1. Protein degradation sets the fraction of active ribosomes at vanishing growth.
    Calabrese L; Grilli J; Osella M; Kempes CP; Lagomarsino MC; Ciandrini L
    PLoS Comput Biol; 2022 May; 18(5):e1010059. PubMed ID: 35500024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth.
    Dai X; Zhu M; Warren M; Balakrishnan R; Patsalo V; Okano H; Williamson JR; Fredrick K; Wang YP; Hwa T
    Nat Microbiol; 2016 Dec; 2():16231. PubMed ID: 27941827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environment-specificity and universality of the microbial growth law.
    Wang Q; Lin J
    Commun Biol; 2022 Aug; 5(1):891. PubMed ID: 36045217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions.
    Li SH; Li Z; Park JO; King CG; Rabinowitz JD; Wingreen NS; Gitai Z
    Nat Microbiol; 2018 Aug; 3(8):939-947. PubMed ID: 30038306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When stable RNA becomes unstable: the degradation of ribosomes in bacteria and beyond.
    Maiväli Ü; Paier A; Tenson T
    Biol Chem; 2013 Jul; 394(7):845-55. PubMed ID: 23612597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithms for ribosome traffic engineering and their potential in improving host cells' titer and growth rate.
    Zur H; Cohen-Kupiec R; Vinokour S; Tuller T
    Sci Rep; 2020 Dec; 10(1):21202. PubMed ID: 33273552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of chemical modification of the CCA end of yeast tRNAPhe on its biological activity on ribosomes.
    Kruse TA; Siboska GE; Sprinzl M; Clark BF
    Eur J Biochem; 1980; 107(1):1-6. PubMed ID: 6995110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a high proportion of inactive ribosomes in slow-growing yeast cells.
    Waldron C; Jund R; Lacroute F
    Biochem J; 1977 Dec; 168(3):409-15. PubMed ID: 343781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR.
    Pestov DG; Shcherbik N
    Mol Cell Biol; 2012 Jun; 32(11):2135-44. PubMed ID: 22451491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A counting-strategy together with a spatial structured model describes RNA polymerase and ribosome availability in Escherichia coli.
    Kremling A
    Metab Eng; 2021 Sep; 67():145-152. PubMed ID: 34174424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel ribosome-associated translation factors are required to maintain the fidelity of translation in yeast.
    Tuite MF; Stansfield I; Eurwilaichitr L; Akhmaloka
    Biochem Soc Trans; 1993 Nov; 21(4):857-62. PubMed ID: 8132081
    [No Abstract]   [Full Text] [Related]  

  • 12. Absence of Ribosome Modulation Factor Alters Growth and Competitive Fitness of Escherichia coli.
    Sebastian H; Finkel SE
    Microbiol Spectr; 2022 Apr; 10(2):e0223921. PubMed ID: 35377189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ribosome biosynthesis in Escherichia coli and Saccharomyces cerevisiae: diversity and common principles.
    Nomura M
    J Bacteriol; 1999 Nov; 181(22):6857-64. PubMed ID: 10559149
    [No Abstract]   [Full Text] [Related]  

  • 14. Principles of cellular resource allocation revealed by condition-dependent proteome profiling.
    Metzl-Raz E; Kafri M; Yaakov G; Soifer I; Gurvich Y; Barkai N
    Elife; 2017 Aug; 6():. PubMed ID: 28857745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sensitivity of rat liver and yeast mitochondrial ribosomes to inhibitors of protein synthesis.
    Ibrahim NG; Burke JP; Beattie DS
    J Biol Chem; 1974 Nov; 249(21):6806-11. PubMed ID: 4609092
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence for demand-regulation of ribosome accumulation in E coli.
    Mikkola R; Kurland CG
    Biochimie; 1991 Dec; 73(12):1551-6. PubMed ID: 1805968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization.
    Bosdriesz E; Molenaar D; Teusink B; Bruggeman FJ
    FEBS J; 2015 May; 282(10):2029-44. PubMed ID: 25754869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of robust growth laws from optimal regulation of ribosome synthesis.
    Scott M; Klumpp S; Mateescu EM; Hwa T
    Mol Syst Biol; 2014 Aug; 10(8):747. PubMed ID: 25149558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is there a unique ribosome phenotype for naturally occurring Escherichia coli?
    Mikkola R; Kurland CG
    Biochimie; 1991; 73(7-8):1061-6. PubMed ID: 1720663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some base substitutions in the leader of an Escherichia coli ribosomal RNA operon affect the structure and function of ribosomes. Evidence for a transient scaffold function of the rRNA leader.
    Theissen G; Thelen L; Wagner R
    J Mol Biol; 1993 Sep; 233(2):203-18. PubMed ID: 8377198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.