These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35500061)

  • 21. Nitric oxide induces Ca2+-independent activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII).
    Coultrap SJ; Bayer KU
    J Biol Chem; 2014 Jul; 289(28):19458-65. PubMed ID: 24855644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptic strength of individual spines correlates with bound Ca2+-calmodulin-dependent kinase II.
    Asrican B; Lisman J; Otmakhov N
    J Neurosci; 2007 Dec; 27(51):14007-11. PubMed ID: 18094239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation.
    Cai Q; Zeng M; Wu X; Wu H; Zhan Y; Tian R; Zhang M
    Cell Res; 2021 Jan; 31(1):37-51. PubMed ID: 33235361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of Calcium/Calmodulin-Dependent Protein Kinase IIα Suppresses Oxidative Stress in Cerebral Ischemic Rats Through Targeting Glucose 6-Phosphate Dehydrogenase.
    Wei Y; Wang R; Teng J
    Neurochem Res; 2019 Jul; 44(7):1613-1620. PubMed ID: 30919283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity-dependent modulation of the interaction between CaMKIIα and Abi1 and its involvement in spine maturation.
    Park E; Chi S; Park D
    J Neurosci; 2012 Sep; 32(38):13177-88. PubMed ID: 22993434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms.
    Incontro S; Díaz-Alonso J; Iafrati J; Vieira M; Asensio CS; Sohal VS; Roche KW; Bender KJ; Nicoll RA
    Nat Commun; 2018 May; 9(1):2069. PubMed ID: 29802289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stress-altered synaptic plasticity and DAMP signaling in the hippocampus-PFC axis; elucidating the significance of IGF-1/IGF-1R/CaMKIIα expression in neural changes associated with a prolonged exposure therapy.
    Ogundele OM; Ebenezer PJ; Lee CC; Francis J
    Neuroscience; 2017 Jun; 353():147-165. PubMed ID: 28438613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Positive allosteric activation of GABAA receptors bi-directionally modulates hippocampal glutamate plasticity and behaviour.
    Shen G; Mohamed MS; Das P; Tietz EI
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1394-8. PubMed ID: 19909283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous Live Imaging of Multiple Endogenous Proteins Reveals a Mechanism for Alzheimer's-Related Plasticity Impairment.
    Cook SG; Goodell DJ; Restrepo S; Arnold DB; Bayer KU
    Cell Rep; 2019 Apr; 27(3):658-665.e4. PubMed ID: 30995464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential Involvement of Kinase Activity of Ca
    Yamagata Y; Yanagawa Y; Imoto K
    eNeuro; 2018; 5(4):. PubMed ID: 30225347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation.
    Miller S; Yasuda M; Coats JK; Jones Y; Martone ME; Mayford M
    Neuron; 2002 Oct; 36(3):507-19. PubMed ID: 12408852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CaMKIIα and caveolin-1 cooperate to drive ATP-induced membrane delivery of the P2X3 receptor.
    Chen XQ; Zhu JX; Wang Y; Zhang X; Bao L
    J Mol Cell Biol; 2014 Apr; 6(2):140-53. PubMed ID: 24755854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential regulation of CaMKIIα interactions with mGluR5 and NMDA receptors by Ca(2+) in neurons.
    Jin DZ; Guo ML; Xue B; Mao LM; Wang JQ
    J Neurochem; 2013 Dec; 127(5):620-31. PubMed ID: 24032403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inducible molecular switches for the study of long-term potentiation.
    Hédou G; Mansuy IM
    Philos Trans R Soc Lond B Biol Sci; 2003 Apr; 358(1432):797-804. PubMed ID: 12740126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacological interactions between calcium/calmodulin-dependent kinase II alpha and TRPV1 receptors in rat trigeminal sensory neurons.
    Price TJ; Jeske NA; Flores CM; Hargreaves KM
    Neurosci Lett; 2005 Dec; 389(2):94-8. PubMed ID: 16095822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Presynaptic CaMKIIα modulates dopamine D3 receptor activation in striatonigral terminals of the rat brain in a Ca²⁺ dependent manner.
    Avalos-Fuentes A; Loya-López S; Flores-Pérez A; Recillas-Morales S; Cortés H; Paz-Bermúdez F; Aceves J; Erlij D; Florán B
    Neuropharmacology; 2013 Aug; 71():273-81. PubMed ID: 23602989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces CaMKIIα in young rats.
    Gao J; Peng S; Xiang S; Huang J; Chen P
    Neurosci Lett; 2014 Feb; 560():62-6. PubMed ID: 24333173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extrasynaptic CaMKIIα is involved in the antidepressant effects of ketamine by downregulating GluN2B receptors in an LPS-induced depression model.
    Tang XH; Zhang GF; Xu N; Duan GF; Jia M; Liu R; Zhou ZQ; Yang JJ
    J Neuroinflammation; 2020 Jun; 17(1):181. PubMed ID: 32522211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A role for dendritic translation of CaMKIIα mRNA in olfactory plasticity.
    Néant-Fery M; Pérès E; Nasrallah C; Kessner M; Gribaudo S; Greer C; Didier A; Trembleau A; Caillé I
    PLoS One; 2012; 7(6):e40133. PubMed ID: 22768241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.
    Zhang YL; Han ZF; Sun YP
    Amino Acids; 2016 Jun; 48(6):1509-21. PubMed ID: 26984442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.