These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35500076)

  • 1. Unsupervised Convolutional Neural Network for Motion Estimation in Ultrasound Elastography.
    Wei X; Wang Y; Ge L; Peng B; He Q; Wang R; Huang L; Xu Y; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2236-2247. PubMed ID: 35500076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Teacher-student guided knowledge distillation for unsupervised convolutional neural network-based speckle tracking in ultrasound strain elastography.
    Xiang T; Li Y; Deng H; Tian C; Peng B; Jiang J
    Med Biol Eng Comput; 2024 Apr; ():. PubMed ID: 38627356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Displacement Estimation in Ultrasound Elastography Using Pyramidal Convolutional Neural Network.
    Tehrani AKZ; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2629-2639. PubMed ID: 32070949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
    Al Mukaddim R; Meshram NH; Varghese T
    Phys Med Biol; 2020 Mar; 65(6):065008. PubMed ID: 32028272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternating direction method of multipliers for displacement estimation in ultrasound strain elastography.
    Ashikuzzaman M; Peng B; Jiang J; Rivaz H
    Med Phys; 2024 May; 51(5):3521-3540. PubMed ID: 38159299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time and High Quality Ultrasound Elastography Using Convolutional Neural Network by Incorporating Analytic Signal.
    Tehrani AKZ; Amiri M; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2075-2078. PubMed ID: 33018414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bi-Directional Semi-Supervised Training of Convolutional Neural Networks for Ultrasound Elastography Displacement Estimation.
    Tehrani AKZ; Sharifzadeh M; Boctor E; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1181-1190. PubMed ID: 35085077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Time-Delay Estimation in Ultrasound Elastography.
    Hashemi HS; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1625-1636. PubMed ID: 28644804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of displacement estimation of breast tissue in ultrasound elastography using the monogenic signal.
    Slimi T; Moussa IM; Kraiem T; Mahjoubi H
    Biomed Eng Online; 2017 Jan; 16(1):19. PubMed ID: 28095866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural-network-based Motion Tracking for Breast Ultrasound Strain Elastography: An Initial Assessment of Performance and Feasibility.
    Peng B; Xian Y; Zhang Q; Jiang J
    Ultrason Imaging; 2020 Mar; 42(2):74-91. PubMed ID: 31997720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Angular Compounding With Affine-Model-Based Optical Flow for Improvement of Motion Estimation.
    Liu Z; He Q; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Apr; 66(4):701-716. PubMed ID: 30703018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hadamard-Encoded Synthetic Transmit Aperture Imaging for Improved Lateral Motion Estimation in Ultrasound Elastography.
    Wang Y; Xie X; He Q; Liao H; Zhang H; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1204-1218. PubMed ID: 35100113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System.
    Wang Y; Nasief HG; Kohn S; Milkowski A; Clary T; Barnes S; Barbone PE; Hall TJ
    Ultrason Imaging; 2017 Nov; 39(6):369-392. PubMed ID: 28585511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Frame Selection using CNN in Ultrasound Elastography.
    Zayed A; Cloutier G; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2027-2030. PubMed ID: 33018402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating Multiple Observations in global Ultrasound Elastography.
    Ashikuzzaman M; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2007-2010. PubMed ID: 33018397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An unsupervised learning approach to ultrasound strain elastography with spatio-temporal consistency.
    Delaunay R; Hu Y; Vercauteren T
    Phys Med Biol; 2021 Sep; 66(17):. PubMed ID: 34298531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast axial and lateral displacement estimation in myocardial elastography based on RF signals with predictions.
    Zhang Y; Sun T; Teng Y; Li H; Kang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1633-9. PubMed ID: 26405928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsupervised deep learning-based displacement estimation for vascular elasticity imaging applications.
    Karageorgos GM; Liang P; Mobadersany N; Gami P; Konofagou EE
    Phys Med Biol; 2023 Jul; 68(15):. PubMed ID: 37348487
    [No Abstract]   [Full Text] [Related]  

  • 19. Combining First- and Second-Order Continuity Constraints in Ultrasound Elastography.
    Ashikuzzaman M; Sadeghi-Naini A; Samani A; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2407-2418. PubMed ID: 33710956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 May; 35(5):796-812. PubMed ID: 19282094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.