These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35500195)

  • 1. CRISPR-Cas Assisted Shotgun Mutagenesis Method for Evolutionary Genome Engineering.
    Zhao M; Gao M; Xiong L; Liu Y; Tao X; Gao B; Liu M; Wang FQ; Wei DZ
    ACS Synth Biol; 2022 May; 11(5):1958-1970. PubMed ID: 35500195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas9.
    Walter JM; Schubert MG; Kung SH; Hawkins K; Platt DM; Hernday AD; Mahatdejkul-Meadows T; Szeto W; Chandran SS; Newman JD; Horwitz AA
    Methods Mol Biol; 2019; 2049():39-72. PubMed ID: 31602604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cas3-base editing tool for targetable in vivo mutagenesis.
    Zimmermann A; Prieto-Vivas JE; Cautereels C; Gorkovskiy A; Steensels J; Van de Peer Y; Verstrepen KJ
    Nat Commun; 2023 Jun; 14(1):3389. PubMed ID: 37296137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9.
    Mans R; Wijsman M; Daran-Lapujade P; Daran JM
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29860374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of point and structural mutations in engineered yeast Saccharomyces cerevisiae improve carotenoid production.
    Yamada R; Ando K; Sakaguchi R; Matsumoto T; Ogino H
    World J Microbiol Biotechnol; 2024 Jun; 40(7):230. PubMed ID: 38829459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system.
    Baek S; Utomo JC; Lee JY; Dalal K; Yoon YJ; Ro DK
    Metab Eng; 2021 Mar; 64():111-121. PubMed ID: 33549837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in
    Gong G; Zhang Y; Wang Z; Liu L; Shi S; Siewers V; Yuan Q; Nielsen J; Zhang X; Liu Z
    ACS Synth Biol; 2021 Jun; 10(6):1328-1337. PubMed ID: 34015926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae.
    Zhang Y; Wang J; Wang Z; Zhang Y; Shi S; Nielsen J; Liu Z
    Nat Commun; 2019 Mar; 10(1):1053. PubMed ID: 30837474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae.
    Ferreira R; Skrekas C; Nielsen J; David F
    ACS Synth Biol; 2018 Jan; 7(1):10-15. PubMed ID: 29161506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi.
    Vyas VK; Bushkin GG; Bernstein DA; Getz MA; Sewastianik M; Barrasa MI; Bartel DP; Fink GR
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29695624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus.
    Gorter de Vries AR; de Groot PA; van den Broek M; Daran JG
    Microb Cell Fact; 2017 Dec; 16(1):222. PubMed ID: 29207996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EasyGuide Plasmids Support in Vivo Assembly of gRNAs for CRISPR/Cas9 Applications in
    Jacobus AP; Barreto JA; de Bem LS; Menegon YA; Fier Í; Bueno JGR; Dos Santos LV; Gross J
    ACS Synth Biol; 2022 Nov; 11(11):3886-3891. PubMed ID: 36257021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-derived genome editing technologies for metabolic engineering.
    Nishida K; Kondo A
    Metab Eng; 2021 Jan; 63():141-147. PubMed ID: 33307189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Introduced RNA-Only Approach for Plasmid Curing via the CRISPR-Cpf1 System in
    Chen BC; Chen YZ; Lin HY
    Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR Nickase-Mediated Base Editing in Yeast.
    Kuroda K; Ueda M
    Methods Mol Biol; 2021; 2196():27-37. PubMed ID: 32889710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9.
    EauClaire SF; Zhang J; Rivera CG; Huang LL
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1001-15. PubMed ID: 27138038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACtivE: Assembly and CRISPR-Targeted
    Malcı K; Jonguitud-Borrego N; van der Straten Waillet H; Puodžiu Naitė U; Johnston EJ; Rosser SJ; Rios-Solis L
    ACS Synth Biol; 2022 Nov; 11(11):3629-3643. PubMed ID: 36252276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in
    Dong C; Jiang L; Xu S; Huang L; Cai J; Lian J; Xu Z
    ACS Synth Biol; 2020 Sep; 9(9):2252-2257. PubMed ID: 32841560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.