These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 35500207)

  • 1. Pore Size of 3D-Printed Polycaprolactone/Polyethylene Glycol/Hydroxyapatite Scaffolds Affects Bone Regeneration by Modulating Macrophage Polarization and the Foreign Body Response.
    Li W; Dai F; Zhang S; Xu F; Xu Z; Liao S; Zeng L; Song L; Ai F
    ACS Appl Mater Interfaces; 2022 May; 14(18):20693-20707. PubMed ID: 35500207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed high-precision porous scaffolds prepared by fused deposition modeling induce macrophage polarization to promote bone regeneration.
    Wang X; Fu X; Luo D; Hou R; Li P; Chen Y; Zhang X; Meng X; Yue Y; Liu J
    Biomed Mater; 2024 Mar; 19(3):. PubMed ID: 38422525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration.
    Shim JH; Jeong JH; Won JY; Bae JH; Ahn G; Jeon H; Yun WS; Bae EB; Choi JW; Lee SH; Jeong CM; Chung HY; Huh JB
    Biomed Mater; 2017 Dec; 13(1):015014. PubMed ID: 29155411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of artificial bone materials with different structural pore sizes obtained from 3D printed polycaprolactone/
    Qianjuan Z; Rong S; Shengxi L; Xuanhao L; Bin L; Fuxiang S
    Biomed Mater; 2024 Sep; 19(6):. PubMed ID: 39208855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect.
    Tian B; Wang N; Jiang Q; Tian L; Hu L; Zhang Z
    J Mater Sci Mater Med; 2021 Jun; 32(6):63. PubMed ID: 34097140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties.
    Biscaia S; Branquinho MV; Alvites RD; Fonseca R; Sousa AC; Pedrosa SS; Caseiro AR; Guedes F; Patrício T; Viana T; Mateus A; Maurício AC; Alves N
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering.
    Salehi S; Ghomi H; Hassanzadeh-Tabrizi SA; Koupaei N; Khodaei M
    Int J Biol Macromol; 2022 Nov; 221():1325-1334. PubMed ID: 36087749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair.
    Liu Y; Wang R; Chen S; Xu Z; Wang Q; Yuan P; Zhou Y; Zhang Y; Chen J
    Int J Biol Macromol; 2020 Apr; 148():153-162. PubMed ID: 31935409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations.
    Cao C; Huang P; Prasopthum A; Parsons AJ; Ai F; Yang J
    Biomater Sci; 2021 Dec; 10(1):138-152. PubMed ID: 34806738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration.
    El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM
    Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications.
    Murugan S; Parcha SR
    J Mater Sci Mater Med; 2021 Aug; 32(8):93. PubMed ID: 34379204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrusion 3D-printing and characterization of poly(caprolactone fumarate) for bone regeneration applications.
    Gaihre B; Potes MDA; Liu X; Tilton M; Camilleri E; Rezaei A; Serdiuk V; Park S; Lucien F; Terzic A; Lu L
    J Biomed Mater Res A; 2024 May; 112(5):672-684. PubMed ID: 37971074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning.
    He FL; Li DW; He J; Liu YY; Ahmad F; Liu YL; Deng X; Ye YJ; Yin DC
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():18-27. PubMed ID: 29525092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations for immunopolarization-regulation and bone regeneration.
    Li W; Xu F; Dai F; Deng T; Ai Y; Xu Z; He C; Ai F; Song L
    Biomater Sci; 2023 May; 11(11):3976-3997. PubMed ID: 37115001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds.
    Koupaei N; Karkhaneh A; Daliri Joupari M
    J Biomed Mater Res A; 2015 Dec; 103(12):3919-26. PubMed ID: 26015080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.