These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 35500274)

  • 1. A Structural View of Alkyl-Coenzyme M Reductases, the First Step of Alkane Anaerobic Oxidation Catalyzed by Archaea.
    Lemaire ON; Wagner T
    Biochemistry; 2022 May; 61(10):805-821. PubMed ID: 35500274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic Degradation of Non-Methane Alkanes by "
    Laso-Pérez R; Hahn C; van Vliet DM; Tegetmeyer HE; Schubotz F; Smit NT; Pape T; Sahling H; Bohrmann G; Boetius A; Knittel K; Wegener G
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl/alkyl-coenzyme M reductase-based anaerobic alkane oxidation in archaea.
    Wang Y; Wegener G; Ruff SE; Wang F
    Environ Microbiol; 2021 Feb; 23(2):530-541. PubMed ID: 32367670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "
    Hahn CJ; Laso-Pérez R; Vulcano F; Vaziourakis KM; Stokke R; Steen IH; Teske A; Boetius A; Liebeke M; Amann R; Knittel K; Wegener G
    mBio; 2020 Apr; 11(2):. PubMed ID: 32317322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic Degradation of Alkanes by Marine Archaea.
    Wegener G; Laso-Pérez R; Orphan VJ; Boetius A
    Annu Rev Microbiol; 2022 Sep; 76():553-577. PubMed ID: 35917471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes.
    Thauer RK
    Biochemistry; 2019 Dec; 58(52):5198-5220. PubMed ID: 30951290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of divergent methyl/alkyl coenzyme M reductases from uncultured archaea.
    Shao N; Fan Y; Chou CW; Yavari S; Williams RV; Amster IJ; Brown SM; Drake IJ; Duin EC; Whitman WB; Liu Y
    Commun Biol; 2022 Oct; 5(1):1113. PubMed ID: 36266535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaea oxidizing alkanes through alkyl-coenzyme M reductases.
    Musat F; Kjeldsen KU; Rotaru AE; Chen SC; Musat N
    Curr Opin Microbiol; 2024 Jun; 79():102486. PubMed ID: 38733792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond methane, new frontiers in anaerobic microbial hydrocarbon utilizing pathways.
    Sarno N; Hyde E; De Anda V; Baker BJ
    Microb Biotechnol; 2024 Jun; 17(6):e14508. PubMed ID: 38888492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding anaerobic alkane metabolism in the domain of Archaea.
    Wang Y; Wegener G; Hou J; Wang F; Xiao X
    Nat Microbiol; 2019 Apr; 4(4):595-602. PubMed ID: 30833728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse anaerobic methane- and multi-carbon alkane-metabolizing archaea coexist and show activity in Guaymas Basin hydrothermal sediment.
    Wang Y; Feng X; Natarajan VP; Xiao X; Wang F
    Environ Microbiol; 2019 Apr; 21(4):1344-1355. PubMed ID: 30790413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advances of structure, function, and catalytic mechanism of methyl-coenzyme M reductase].
    Lai Z; Huang G; Bai L
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4147-4157. PubMed ID: 34984864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea.
    Borrel G; Adam PS; McKay LJ; Chen LX; Sierra-García IN; Sieber CMK; Letourneur Q; Ghozlane A; Andersen GL; Li WJ; Hallam SJ; Muyzer G; de Oliveira VM; Inskeep WP; Banfield JF; Gribaldo S
    Nat Microbiol; 2019 Apr; 4(4):603-613. PubMed ID: 30833729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview of Diverse Methyl/Alkyl-Coenzyme M Reductases and Considerations for Their Potential Heterologous Expression.
    Gendron A; Allen KD
    Front Microbiol; 2022; 13():867342. PubMed ID: 35547147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane as fuel for anaerobic microorganisms.
    Thauer RK; Shima S
    Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophilic archaea activate butane via alkyl-coenzyme M formation.
    Laso-Pérez R; Wegener G; Knittel K; Widdel F; Harding KJ; Krukenberg V; Meier DV; Richter M; Tegetmeyer HE; Riedel D; Richnow HH; Adrian L; Reemtsma T; Lechtenfeld OJ; Musat F
    Nature; 2016 Nov; 539(7629):396-401. PubMed ID: 27749816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea.
    Hua ZS; Wang YL; Evans PN; Qu YN; Goh KM; Rao YZ; Qi YL; Li YX; Huang MJ; Jiao JY; Chen YT; Mao YP; Shu WS; Hozzein W; Hedlund BP; Tyson GW; Zhang T; Li WJ
    Nat Commun; 2019 Oct; 10(1):4574. PubMed ID: 31594929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane.
    Scheller S; Goenrich M; Boecher R; Thauer RK; Jaun B
    Nature; 2010 Jun; 465(7298):606-8. PubMed ID: 20520712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic hexadecane degradation by a thermophilic Hadarchaeon from Guaymas Basin.
    Benito Merino D; Lipp JS; Borrel G; Boetius A; Wegener G
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38365230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evolving view of methane metabolism in the Archaea.
    Evans PN; Boyd JA; Leu AO; Woodcroft BJ; Parks DH; Hugenholtz P; Tyson GW
    Nat Rev Microbiol; 2019 Apr; 17(4):219-232. PubMed ID: 30664670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.