These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 35500274)
21. An evolving view of methane metabolism in the Archaea. Evans PN; Boyd JA; Leu AO; Woodcroft BJ; Parks DH; Hugenholtz P; Tyson GW Nat Rev Microbiol; 2019 Apr; 17(4):219-232. PubMed ID: 30664670 [TBL] [Abstract][Full Text] [Related]
22. A Reduced F Heryakusuma C; Susanti D; Yu H; Li Z; Purwantini E; Hettich RL; Orphan VJ; Mukhopadhyay B J Bacteriol; 2022 Jul; 204(7):e0007822. PubMed ID: 35695516 [TBL] [Abstract][Full Text] [Related]
23. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Chen SC; Musat N; Lechtenfeld OJ; Paschke H; Schmidt M; Said N; Popp D; Calabrese F; Stryhanyuk H; Jaekel U; Zhu YG; Joye SB; Richnow HH; Widdel F; Musat F Nature; 2019 Apr; 568(7750):108-111. PubMed ID: 30918404 [TBL] [Abstract][Full Text] [Related]
24. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Zhou Z; Zhang CJ; Liu PF; Fu L; Laso-Pérez R; Yang L; Bai LP; Li J; Yang M; Lin JZ; Wang WD; Wegener G; Li M; Cheng L Nature; 2022 Jan; 601(7892):257-262. PubMed ID: 34937940 [TBL] [Abstract][Full Text] [Related]
25. Catalytic mechanism of butane anaerobic oxidation for alkyl-coenzyme M reductase. Tian X; Liu H; Chen HF Chem Biol Drug Des; 2021 Nov; 98(5):701-712. PubMed ID: 34328701 [TBL] [Abstract][Full Text] [Related]
27. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Shima S; Thauer RK Curr Opin Microbiol; 2005 Dec; 8(6):643-8. PubMed ID: 16242993 [TBL] [Abstract][Full Text] [Related]
28. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane. Ragsdale SW Met Ions Life Sci; 2014; 14():125-45. PubMed ID: 25416393 [TBL] [Abstract][Full Text] [Related]
29. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture. Gambelli L; Guerrero-Cruz S; Mesman RJ; Cremers G; Jetten MSM; Op den Camp HJM; Kartal B; Lueke C; van Niftrik L Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150508 [TBL] [Abstract][Full Text] [Related]
30. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue. Dey M; Li X; Kunz RC; Ragsdale SW Biochemistry; 2010 Dec; 49(51):10902-11. PubMed ID: 21090696 [TBL] [Abstract][Full Text] [Related]
31. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea. Yan Z; Wang M; Ferry JG mBio; 2017 Feb; 8(1):. PubMed ID: 28174314 [TBL] [Abstract][Full Text] [Related]
32. Methane oxidation by anaerobic archaea for conversion to liquid fuels. Mueller TJ; Grisewood MJ; Nazem-Bokaee H; Gopalakrishnan S; Ferry JG; Wood TK; Maranas CD J Ind Microbiol Biotechnol; 2015 Mar; 42(3):391-401. PubMed ID: 25427790 [TBL] [Abstract][Full Text] [Related]
33. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane. Scheller S; Goenrich M; Thauer RK; Jaun B J Am Chem Soc; 2013 Oct; 135(40):14975-84. PubMed ID: 24004388 [TBL] [Abstract][Full Text] [Related]
34. The pathway for coenzyme M biosynthesis in bacteria. Wu HH; Pun MD; Wise CE; Streit BR; Mus F; Berim A; Kincannon WM; Islam A; Partovi SE; Gang DR; DuBois JL; Lubner CE; Berkman CE; Lange BM; Peters JW Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2207190119. PubMed ID: 36037354 [TBL] [Abstract][Full Text] [Related]
35. Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase. Hinderberger D; Ebner S; Mayr S; Jaun B; Reiher M; Goenrich M; Thauer RK; Harmer J J Biol Inorg Chem; 2008 Nov; 13(8):1275-89. PubMed ID: 18712421 [TBL] [Abstract][Full Text] [Related]
36. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Shima S; Krueger M; Weinert T; Demmer U; Kahnt J; Thauer RK; Ermler U Nature; 2011 Nov; 481(7379):98-101. PubMed ID: 22121022 [TBL] [Abstract][Full Text] [Related]
37. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Hallam SJ; Girguis PR; Preston CM; Richardson PM; DeLong EF Appl Environ Microbiol; 2003 Sep; 69(9):5483-91. PubMed ID: 12957937 [TBL] [Abstract][Full Text] [Related]
38. Localization of Methyl-Coenzyme M reductase as metabolic marker for diverse methanogenic Archaea. Wrede C; Walbaum U; Ducki A; Heieren I; Hoppert M Archaea; 2013; 2013():920241. PubMed ID: 23533332 [TBL] [Abstract][Full Text] [Related]
39. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299 [TBL] [Abstract][Full Text] [Related]
40. Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir. Mbadinga SM; Li KP; Zhou L; Wang LY; Yang SZ; Liu JF; Gu JD; Mu BZ Appl Microbiol Biotechnol; 2012 Oct; 96(2):531-42. PubMed ID: 22249716 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]