BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35500295)

  • 1. In-Plane, In-Series Nanopores with Circular Cross Sections for Resistive-Pulse Sensing.
    Zhang M; Harms ZD; Greibe T; Starr CA; Zlotnick A; Jacobson SC
    ACS Nano; 2022 May; 16(5):7352-7360. PubMed ID: 35500295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids.
    Harms ZD; Mogensen KB; Nunes PS; Zhou K; Hildenbrand BW; Mitra I; Tan Z; Zlotnick A; Kutter JP; Jacobson SC
    Anal Chem; 2011 Dec; 83(24):9573-8. PubMed ID: 22029283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-particle electrophoresis in nanochannels.
    Harms ZD; Haywood DG; Kneller AR; Selzer L; Zlotnick A; Jacobson SC
    Anal Chem; 2015 Jan; 87(1):699-705. PubMed ID: 25489919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofluidic Devices with 8 Pores in Series for Real-Time, Resistive-Pulse Analysis of Hepatitis B Virus Capsid Assembly.
    Kondylis P; Zhou J; Harms ZD; Kneller AR; Lee LS; Zlotnick A; Jacobson SC
    Anal Chem; 2017 May; 89(9):4855-4862. PubMed ID: 28322548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of hepatitis B virus capsids by resistive-pulse sensing.
    Zhou K; Li L; Tan Z; Zlotnick A; Jacobson SC
    J Am Chem Soc; 2011 Feb; 133(6):1618-21. PubMed ID: 21265511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Virus Capsids and Their Assembly Intermediates by Multicycle Resistive-Pulse Sensing with Four Pores in Series.
    Zhou J; Kondylis P; Haywood DG; Harms ZD; Lee LS; Zlotnick A; Jacobson SC
    Anal Chem; 2018 Jun; 90(12):7267-7274. PubMed ID: 29708733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring Thermoplastic In-Plane Nanopore Size by Thermal Fusion Bonding for the Analysis of Single Molecules.
    Athapattu US; Rathnayaka C; Vaidyanathan S; Gamage SST; Choi J; Riahipour R; Manoharan A; Hall AR; Park S; Soper SA
    ACS Sens; 2021 Aug; 6(8):3133-3143. PubMed ID: 34406743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Extracellular Vesicles by Resistive-Pulse Sensing on In-Plane Multipore Nanofluidic Devices.
    Young TW; Kappler MP; Hockaden NM; Carpenter RL; Jacobson SC
    Anal Chem; 2023 Nov; 95(45):16710-16716. PubMed ID: 37916500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring Assembly of Virus Capsids with Nanofluidic Devices.
    Harms ZD; Selzer L; Zlotnick A; Jacobson SC
    ACS Nano; 2015 Sep; 9(9):9087-96. PubMed ID: 26266555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disassembly of Single Virus Capsids Monitored in Real Time with Multicycle Resistive-Pulse Sensing.
    Zhou J; Zlotnick A; Jacobson SC
    Anal Chem; 2022 Jan; 94(2):985-992. PubMed ID: 34932317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated In-Plane Nanofluidic Devices for Resistive-Pulse Sensing.
    Young TW; Kappler MP; Call ED; Brown QJ; Jacobson SC
    Annu Rev Anal Chem (Palo Alto Calif); 2024 Apr; ():. PubMed ID: 38608295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cone angle and length of nanopores on the resistive pulse quality.
    Bakouei M; Abdorahimzadeh S; Taghipoor M
    Phys Chem Chem Phys; 2020 Nov; 22(43):25306-25314. PubMed ID: 33140790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-State Nanopore/Nanochannel Sensing of Single Entities.
    Yi W; Zhang C; Zhang Q; Zhang C; Lu Y; Yi L; Wang X
    Top Curr Chem (Cham); 2023 Apr; 381(4):13. PubMed ID: 37103594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and identification of single ribonucleotide monophosphates using a dual in-plane nanopore sensor made in a thermoplastic
    Rathnayaka C; Chandrosoma IA; Choi J; Childers K; Chibuike M; Akabirov K; Shiri F; Hall AR; Lee M; McKinney C; Verber M; Park S; Soper SA
    Lab Chip; 2024 May; 24(10):2721-2735. PubMed ID: 38656267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of solid-state nanopores and its perspectives.
    Kudr J; Skalickova S; Nejdl L; Moulick A; Ruttkay-Nedecky B; Adam V; Kizek R
    Electrophoresis; 2015 Oct; 36(19):2367-79. PubMed ID: 26046318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.
    Harrer S; Kim SC; Schieber C; Kannam S; Gunn N; Moore S; Scott D; Bathgate R; Skafidas S; Wagner JM
    Nanotechnology; 2015 May; 26(18):182502. PubMed ID: 25875197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle transport in conical-shaped nanopores.
    Lan WJ; Holden DA; Zhang B; White HS
    Anal Chem; 2011 May; 83(10):3840-7. PubMed ID: 21495727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Measurement of Proteins Using a Solid-State Nanopore Coupled with a Hydrogel.
    Acharya S; Jiang A; Kuo C; Nazarian R; Li K; Ma A; Siegal B; Toh C; Schmidt JJ
    ACS Sens; 2020 Feb; 5(2):370-376. PubMed ID: 31965788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection.
    Yanagi I; Akahori R; Hatano T; Takeda K
    Sci Rep; 2014 May; 4():5000. PubMed ID: 24847795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on nanopores based protein sensing in complex analyte.
    Das N; Chakraborty B; RoyChaudhuri C
    Talanta; 2022 Jun; 243():123368. PubMed ID: 35287016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.