These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 35500373)

  • 41. Study on temporary resolution for offshore marine oil spill emergencies based on remote sensing system.
    Lan GX; Dong KX; Lin JJ
    J Environ Biol; 2016 Sep; 37(5 Spec No):1177-1180. PubMed ID: 29989750
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Operational oil spill trajectory modelling using HF radar currents: A northwest European continental shelf case study.
    Abascal AJ; Sanchez J; Chiri H; Ferrer MI; Cárdenas M; Gallego A; Castanedo S; Medina R; Alonso-Martirena A; Berx B; Turrell WR; Hughes SL
    Mar Pollut Bull; 2017 Jun; 119(1):336-350. PubMed ID: 28442198
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of HF radar currents to oil spill modelling.
    Abascal AJ; Castanedo S; Medina R; Losada IJ; Alvarez-Fanjul E
    Mar Pollut Bull; 2009 Feb; 58(2):238-48. PubMed ID: 18996546
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the SAR derived alert in the detection of oil spills according to the analysis of the EGEMP.
    Ferraro G; Baschek B; de Montpellier G; Njoten O; Perkovic M; Vespe M
    Mar Pollut Bull; 2010 Jan; 60(1):91-102. PubMed ID: 19775709
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oil spill identification in X-band marine radar image using K-means and texture feature.
    Chen R; Li B; Jia B; Xu J; Ma L; Yang H; Wang H
    PeerJ Comput Sci; 2022; 8():e1133. PubMed ID: 36426254
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monitoring offshore oil pollution using multi-class convolutional neural networks.
    Ghorbani Z; Behzadan AH
    Environ Pollut; 2021 Nov; 289():117884. PubMed ID: 34364118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beyond Thresholds: A Holistic Approach to Impact Assessment Is Needed to Enable Accurate Predictions of Environmental Risk from Oil Spills.
    Hook SE
    Integr Environ Assess Manag; 2020 Nov; 16(6):813-830. PubMed ID: 32729983
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a field testing protocol for identifying Deepwater Horizon oil spill residues trapped near Gulf of Mexico beaches.
    Han Y; Clement TP
    PLoS One; 2018; 13(1):e0190508. PubMed ID: 29329313
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill.
    Dincer Kırman Z; Sericano JL; Wade TL; Bianchi TS; Marcantonio F; Kolker AS
    Environ Pollut; 2016 Jul; 214():101-113. PubMed ID: 27064616
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bayesian identification of oil spill source parameters from image contours.
    El Mohtar S; Ait-El-Fquih B; Knio O; Lakkis I; Hoteit I
    Mar Pollut Bull; 2021 Aug; 169():112514. PubMed ID: 34091253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection and object-based classification of offshore oil slicks using ENVISAT-ASAR images.
    Akar S; Süzen ML; Kaymakci N
    Environ Monit Assess; 2011 Dec; 183(1-4):409-23. PubMed ID: 21380923
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oil pollution in the Eastern Arabian Sea from invisible sources: A multi-technique approach.
    Suneel V; Rao VT; Suresh G; Chaudhary A; Vethamony P; Ratheesh R
    Mar Pollut Bull; 2019 Sep; 146():683-695. PubMed ID: 31426210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical Study on the Influence of Model Uncertainties on the Transport of Underwater Spilled Oil.
    Wang D; Luo Z; Mu L
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35954631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of photochemical processes in marine oil spill fingerprinting.
    Radović JR; Aeppli C; Nelson RK; Jimenez N; Reddy CM; Bayona JM; Albaigés J
    Mar Pollut Bull; 2014 Feb; 79(1-2):268-77. PubMed ID: 24355571
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of enhanced gas chromatography/triple quadrupole mass spectrometry for monitoring petroleum weathering and forensic source fingerprinting in samples impacted by the Deepwater Horizon oil spill.
    Adhikari PL; Wong RL; Overton EB
    Chemosphere; 2017 Oct; 184():939-950. PubMed ID: 28655113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monitoring of oil spill in the offshore zone of the Nile Delta using Sentinel data.
    Abou Samra RM; Ali RR
    Mar Pollut Bull; 2022 Jun; 179():113718. PubMed ID: 35561516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient tools for marine operational forecast and oil spill tracking.
    Marta-Almeida M; Ruiz-Villarreal M; Pereira J; Otero P; Cirano M; Zhang X; Hetland RD
    Mar Pollut Bull; 2013 Jun; 71(1-2):139-51. PubMed ID: 23643409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring.
    De Padova D; Mossa M; Adamo M; De Carolis G; Pasquariello G
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5530-5543. PubMed ID: 28028707
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of marine oil-like features in Sentinel-1 SAR images by supplementary use of deep learning and empirical methods: Performance assessment for the Great Barrier Reef marine park.
    Blondeau-Patissier D; Schroeder T; Suresh G; Li Z; Diakogiannis FI; Irving P; Witte C; Steven ADL
    Mar Pollut Bull; 2023 Mar; 188():114598. PubMed ID: 36773587
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development and testing of a 2D offshore oil spill modeling tool (OSMT) supported by an effective calibration method.
    Yang Z; Chen Z; Lee K
    Mar Pollut Bull; 2023 Mar; 188():114696. PubMed ID: 36758314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.