BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35500410)

  • 1. Improvement of stability and lipophilicity of pelargonidin-3-glucoside by enzymatic acylation with aliphatic dicarboxylic acid.
    Xie J; Hao X; Shang Y; Chen W
    Food Chem; 2022 Sep; 389():133077. PubMed ID: 35500410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acylated pelargonidin glycosides from the red-purple flowers of Iberis umbellata L. and the red flowers of Erysimum × cheiri (L.) Crantz (Brassicaceae).
    Tatsuzawa F
    Phytochemistry; 2019 Mar; 159():108-118. PubMed ID: 30605852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylated pelargonidin-3-
    Hao X; Xie J; Li Y; Chen W
    Food Funct; 2022 Mar; 13(5):2618-2630. PubMed ID: 35166765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acylated pelargonidin 3-sambubioside-5-glucosides in Matthiola incana.
    Saito N; Tatsuzawa F; Hongo A; Win KW; Yokoi M; Shigihara A; Honda T
    Phytochemistry; 1996 Apr; 41(6):1613-20. PubMed ID: 8722092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic acylation of blackcurrant (Ribes nigrum) anthocyanins and evaluation of lipophilic properties and antioxidant capacity of derivatives.
    Yang W; Kortesniemi M; Ma X; Zheng J; Yang B
    Food Chem; 2019 May; 281():189-196. PubMed ID: 30658747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seven acylated anthocyanins in the blue flowers of Hyacinthus orientalis.
    Hosokawa K; Fukunaga Y; Fukushi E; Kawabata J
    Phytochemistry; 1995 Mar; 38(5):1293-8. PubMed ID: 7766400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic acylation of cyanidin-3-glucoside with fatty acid methyl esters improves stability and antioxidant activity.
    Zhang P; Liu S; Zhao Z; You L; Harrison MD; Zhang Z
    Food Chem; 2021 May; 343():128482. PubMed ID: 33160770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic Acylation of Anthocyanin Isolated from Black Rice with Methyl Aromatic Acid Ester as Donor: Stability of the Acylated Derivatives.
    Yan Z; Li C; Zhang L; Liu Q; Ou S; Zeng X
    J Agric Food Chem; 2016 Feb; 64(5):1137-43. PubMed ID: 26766135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of the Color Stability of Cyanidin-3-glucoside by Fatty Acid Enzymatic Acylation.
    Guimarães M; Mateus N; de Freitas V; Cruz L
    J Agric Food Chem; 2018 Sep; 66(38):10003-10010. PubMed ID: 30187750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins.
    Giusti MM; Rodríguez-Saona LE; Wrolstad RE
    J Agric Food Chem; 1999 Nov; 47(11):4631-7. PubMed ID: 10552862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of self-aggregation on the determination of the kinetic and thermodynamic constants of the network of chemical reactions in 3-glucoside anthocyanins.
    Leydet Y; Gavara R; Petrov V; Diniz AM; Jorge Parola A; Lima JC; Pina F
    Phytochemistry; 2012 Nov; 83():125-35. PubMed ID: 22906883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acylated pelargonidin glycosides in red-purple flowers of Ipomoea purpurea.
    Saito N; Tatsuzawa F; Yokoi M; Kasahara K; Iida S; Shigihara A; Honda T
    Phytochemistry; 1996 Dec; 43(6):1365-70. PubMed ID: 8987912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malvidin 3-Glucoside-Fatty Acid Conjugates: From Hydrophilic toward Novel Lipophilic Derivatives.
    Cruz L; Guimarães M; Araújo P; Évora A; de Freitas V; Mateus N
    J Agric Food Chem; 2017 Aug; 65(31):6513-6518. PubMed ID: 28178778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Insight into the Degradation of Anthocyanins: Reversible versus the Irreversible Chemical Processes.
    Sousa D; Basílio N; Oliveira J; de Freitas V; Pina F
    J Agric Food Chem; 2022 Jan; 70(2):656-668. PubMed ID: 34982560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of strawberry anthocyanins using high-speed counter-current chromatography and the copigmentation with catechin or epicatechin by high pressure processing.
    Zou H; Ma Y; Xu Z; Liao X; Chen A; Yang S
    Food Chem; 2018 May; 247():81-88. PubMed ID: 29277232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability to light, heat, and hydrogen peroxide at different pH values and DPPH radical scavenging activity of acylated anthocyanins from red radish extract.
    Matsufuji H; Kido H; Misawa H; Yaguchi J; Otsuki T; Chino M; Takeda M; Yamagata K
    J Agric Food Chem; 2007 May; 55(9):3692-701. PubMed ID: 17394340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic acylation of cyanidin-3-
    Lin Y; Li C; Shao P; Jiang L; Chen B; Farag MA
    Curr Res Food Sci; 2022; 5():2219-2227. PubMed ID: 36419743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic acylation of raspberry anthocyanin: Evaluations on its stability and oxidative stress prevention.
    Teng H; Mi Y; Cao H; Chen L
    Food Chem; 2022 Mar; 372():130766. PubMed ID: 34600197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermolecular Copigmentation Between Delphinidin 3-
    Seco A; Basílio N; Brás NF; Yoshida K; Kondo T; Oyama KI; Pina F
    J Agric Food Chem; 2022 Sep; 70(36):11391-11400. PubMed ID: 36040134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic Acylation of Anthocyanins Isolated from Alpine Bearberry ( Arctostaphylos alpina) and Lipophilic Properties, Thermostability, and Antioxidant Capacity of the Derivatives.
    Yang W; Kortesniemi M; Yang B; Zheng J
    J Agric Food Chem; 2018 Mar; 66(11):2909-2916. PubMed ID: 29482326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.