These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35500457)

  • 1. Risk-based implementation of COLREGs for autonomous surface vehicles using deep reinforcement learning.
    Heiberg A; Larsen TN; Meyer E; Rasheed A; San O; Varagnolo D
    Neural Netw; 2022 Aug; 152():17-33. PubMed ID: 35500457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Collision Avoidance for ASVs Compliant With COLREGs Rules 8 and 13-17.
    Eriksen BH; Bitar G; Breivik M; Lekkas AM
    Front Robot AI; 2020; 7():11. PubMed ID: 33501180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Reinforcement Learning Collision Avoidance Algorithm for USVs Based on Maneuvering Characteristics and COLREGs.
    Fan Y; Sun Z; Wang G
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles.
    Havenstrøm ST; Rasheed A; San O
    Front Robot AI; 2020; 7():566037. PubMed ID: 33585570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning.
    Zhang X; Wang C; Liu Y; Chen X
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmanned Surface Vehicle Collision Avoidance Path Planning in Restricted Waters Using Multi-Objective Optimisation Complying with COLREGs.
    Gu Y; Rong Z; Tong H; Wang J; Si Y; Yang S
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous Collision Avoidance at Sea: A Survey.
    Burmeister HC; Constapel M
    Front Robot AI; 2021; 8():739013. PubMed ID: 34604317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning.
    Lambert R; Li J; Wu LF; Mahmoudian N
    Front Robot AI; 2021; 8():739023. PubMed ID: 34616776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning.
    Guo S; Zhang X; Zheng Y; Du AY
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial-temporal recurrent reinforcement learning for autonomous ships.
    Waltz M; Okhrin O
    Neural Netw; 2023 Aug; 165():634-653. PubMed ID: 37364473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y; Liao S; Liu X; Li Z; Lu R
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beam Search Algorithm for Anti-Collision Trajectory Planning for Many-to-Many Encounter Situations with Autonomous Surface Vehicles.
    Koszelew J; Karbowska-Chilinska J; Ostrowski K; Kuczyński P; Kulbiej E; Wołejsza P
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of LiDAR Configuration on Goal-Based Navigation within a Deep Reinforcement Learning Framework.
    Olayemi KB; Van M; McLoone S; McIlvanna S; Sun Y; Close J; Nguyen NM
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Obstacle Avoidance for USVs Using Cross-Domain Deep Reinforcement Learning and Neural Network Model Predictive Controller.
    Li J; Chavez-Galaviz J; Azizzadenesheli K; Mahmoudian N
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double Deep Q-Learning and Faster R-CNN-Based Autonomous Vehicle Navigation and Obstacle Avoidance in Dynamic Environment.
    Bin Issa R; Das M; Rahman MS; Barua M; Rhaman MK; Ripon KSN; Alam MGR
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints.
    Li Z; Yuan S; Yin X; Li X; Tang S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey.
    Xu L; Zhu S; Wen N
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36270582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing Deep Reinforcement Learning Algorithms' Ability to Safely Navigate Challenging Waters.
    Larsen TN; Teigen HØ; Laache T; Varagnolo D; Rasheed A
    Front Robot AI; 2021; 8():738113. PubMed ID: 34589522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weakly Supervised Reinforcement Learning for Autonomous Highway Driving via Virtual Safety Cages.
    Kuutti S; Bowden R; Fallah S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33805601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intelligent Control of Groundwater in Slopes with Deep Reinforcement Learning.
    Biniyaz A; Azmoon B; Liu Z
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.