These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35500523)

  • 21. Lane change warning threshold based on driver perception characteristics.
    Wang C; Sun Q; Fu R; Li Z; Zhang Q
    Accid Anal Prev; 2018 Aug; 117():164-174. PubMed ID: 29704793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mathematical model for predicting lane changes using the steering wheel angle.
    Schmidt K; Beggiato M; Hoffmann KH; Krems JF
    J Safety Res; 2014 Jun; 49():85-90. PubMed ID: 24913491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-parameter prediction of drivers' lane-changing behaviour with neural network model.
    Peng J; Guo Y; Fu R; Yuan W; Wang C
    Appl Ergon; 2015 Sep; 50():207-17. PubMed ID: 25959336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Key feature selection and risk prediction for lane-changing behaviors based on vehicles' trajectory data.
    Chen T; Shi X; Wong YD
    Accid Anal Prev; 2019 Aug; 129():156-169. PubMed ID: 31150922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting driver takeover performance in conditionally automated driving.
    Du N; Zhou F; Pulver EM; Tilbury DM; Robert LP; Pradhan AK; Yang XJ
    Accid Anal Prev; 2020 Dec; 148():105748. PubMed ID: 33099127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aggressive driving behavior prediction considering driver's intention based on multivariate-temporal feature data.
    Xu W; Wang J; Fu T; Gong H; Sobhani A
    Accid Anal Prev; 2022 Jan; 164():106477. PubMed ID: 34813934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the validity of test scores using response process data from an eye-tracking study: a new approach.
    Yaneva V; Clauser BE; Morales A; Paniagua M
    Adv Health Sci Educ Theory Pract; 2022 Dec; 27(5):1401-1422. PubMed ID: 35511357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hybrid deep learning approach for driver anomalous lane changing identification.
    Fan P; Guo J; Wang Y; Wijnands JS
    Accid Anal Prev; 2022 Jun; 171():106661. PubMed ID: 35462211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems.
    Rahman MM; Lesch MF; Horrey WJ; Strawderman L
    Accid Anal Prev; 2017 Nov; 108():361-373. PubMed ID: 28957759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prevalence of driver physical factors leading to unintentional lane departure crashes.
    Cicchino JB; Zuby DS
    Traffic Inj Prev; 2017 Jul; 18(5):481-487. PubMed ID: 27740863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gaze and Eye Tracking: Techniques and Applications in ADAS.
    Khan MQ; Lee S
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analyzing the effect of fog weather conditions on driver lane-keeping performance using the SHRP2 naturalistic driving study data.
    Das A; Ghasemzadeh A; Ahmed MM
    J Safety Res; 2019 Feb; 68():71-80. PubMed ID: 30876522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vision-Based Driver's Cognitive Load Classification Considering Eye Movement Using Machine Learning and Deep Learning.
    Rahman H; Ahmed MU; Barua S; Funk P; Begum S
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34884021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy Efficient Pupil Tracking Based on Rule Distillation of Cascade Regression Forest.
    Kim S; Jeong M; Ko BC
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32916968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steering in a random forest: ensemble learning for detecting drowsiness-related lane departures.
    McDonald AD; Lee JD; Schwarz C; Brown TL
    Hum Factors; 2014 Aug; 56(5):986-98. PubMed ID: 25141601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and Calibration of an Eye-Tracking Fixation Identification Algorithm for Immersive Virtual Reality.
    Llanes-Jurado J; Marín-Morales J; Guixeres J; Alcañiz M
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32883026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data.
    Kang J; Han X; Song J; Niu Z; Li X
    Comput Biol Med; 2020 May; 120():103722. PubMed ID: 32250854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Short-term prediction of safety and operation impacts of lane changes in oscillations with empirical vehicle trajectories.
    Li M; Li Z; Xu C; Liu T
    Accid Anal Prev; 2020 Feb; 135():105345. PubMed ID: 31751785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Eye Tracking Technology in Aviation, Maritime, and Construction Industries: A Systematic Review.
    Martinez-Marquez D; Pingali S; Panuwatwanich K; Stewart RA; Mohamed S
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-Time Driving Behavior Identification Based on Multi-Source Data Fusion.
    Ma Y; Xie Z; Chen S; Wu Y; Qiao F
    Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.