These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35500627)

  • 1. Removal of arsenic in acidic wastewater using Lead-Zinc smelting slag: From waste solid to As-stabilized mineral.
    Li Y; Qi X; Li G; Duan X; Yang N
    Chemosphere; 2022 Aug; 301():134736. PubMed ID: 35500627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of Lead Slag as In Situ Iron Source for Arsenic Removal by Forming Iron Arsenate.
    Chen P; Zhao Y; Yao J; Zhu J; Cao J
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilizing arsenic-enriched wastewater from utilization of crude antimony oxides as scorodite using a novel multivalent iron source.
    Tang Z; Tang X; Liu H; Xiao Z
    Chemosphere; 2023 Oct; 339():139751. PubMed ID: 37557998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partitioning and transformation behavior of arsenic during Fe(III)-As(III)-As(V)-SO
    Ma X; Zhang J; Gomez MA; Ding Y; Yao S; Lv H; Wang X; Wang S; Jia Y
    Sci Total Environ; 2021 Dec; 799():149474. PubMed ID: 34426338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals.
    Li YC; Min XB; Chai LY; Shi MQ; Tang CJ; Wang QW; Liang YJ; Lei J; Liyang WJ
    J Environ Manage; 2016 Oct; 181():756-761. PubMed ID: 27449964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization.
    Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags.
    Zhang X; Sun Y; Ma Y; Ji W; Ren Y
    Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride converts lead slag into a bifunctional material to remove heavy metals.
    Zhi G; Qi X; Yan G; Li Y; Wang J; Huang P; Wang H; Shi J; Wang J
    J Environ Manage; 2023 Oct; 344():118631. PubMed ID: 37459815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The release analysis of As and Cr metals in lead-zinc smelting slag: Mineralogical analysis, bioavailability and leachability analysis.
    Ma Y; Li C; Yan J; Yu H; Kan H; Yu W; Zhou X; Meng Q; Dong P
    Environ Res; 2023 Jul; 229():115751. PubMed ID: 36966997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scoping candidate minerals for stabilization of arsenic-bearing solid residuals.
    Raghav M; Shan J; Sáez AE; Ela WP
    J Hazard Mater; 2013 Dec; 263 Pt 2(0 2):525-32. PubMed ID: 24231323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-enhanced and efficient removal of arsenic from waste acid using magnetite as an in situ iron donator.
    Cai G; Zhu X; Li K; Qi X; Wei Y; Wang H; Hao F
    Water Res; 2019 Jun; 157():269-280. PubMed ID: 30959330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of 15% calcium oxide doped nano zero-valent iron on arsenic removal from high-arsenic acid wastewater.
    Kong Y; Xu B; Lu F; Han Z; Ma J; Chen Z; Shen J
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):75156-75169. PubMed ID: 37217816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO(4)-Fe(II) process.
    Guan X; Ma J; Dong H; Jiang L
    Water Res; 2009 Dec; 43(20):5119-28. PubMed ID: 19201439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal treatment of arsenic sulfide slag to immobilize arsenic into scorodite and recycle sulfur.
    Zhang W; Lu H; Liu F; Wang C; Zhang Z; Zhang J
    J Hazard Mater; 2021 Mar; 406():124735. PubMed ID: 33296758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag.
    Oh C; Rhee S; Oh M; Park J
    J Hazard Mater; 2012 Apr; 213-214():147-55. PubMed ID: 22349716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-induced highly efficient removal of As(III) through synergistic photo-oxidation in the presence of Fe(II).
    Zhang M; Liu L; Li A; Zhang T; Qiu G
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71583-71592. PubMed ID: 35604606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO
    Lu Z; Qi X; Zhu X; Li X; Li K; Wang H
    Environ Pollut; 2021 Oct; 287():117484. PubMed ID: 34153609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step removal of high-concentration arsenic from wastewater to form Johnbaumite using arsenic-bearing gypsum.
    Sun X; Mao M; Lu K; Hu Q; Liu W; Lin Z
    J Hazard Mater; 2022 Feb; 424(Pt C):127585. PubMed ID: 34753651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron oxide-loaded slag for arsenic removal from aqueous system.
    Zhang FS; Itoh H
    Chemosphere; 2005 Jul; 60(3):319-25. PubMed ID: 15924950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal.
    González-Contreras P; Weijma J; Buisman CJ
    Water Res; 2012 Nov; 46(18):5883-92. PubMed ID: 22960037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.