These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35500627)

  • 21. Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal.
    Gonzalez-Contreras P; Weijma J; van der Weijden R; Buisman CJ
    Environ Sci Technol; 2010 Jan; 44(2):675-80. PubMed ID: 20017476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term stability of the Fe(III)-As(V) coprecipitates: Effects of neutralization mode and the addition of Fe(II) on arsenic retention.
    Zhang D; Wang S; Gomez MA; Wang Y; Jia Y
    Chemosphere; 2019 Dec; 237():124503. PubMed ID: 31398610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel arsenic immobilization strategy via a two-step process: Arsenic concentration from dilute solution using schwertmannite and immobilization in Ca-Fe-AsO
    Park I; Ryota T; Yuto T; Tabelin CB; Phengsaart T; Jeon S; Ito M; Hiroyoshi N
    J Environ Manage; 2021 Oct; 295():113052. PubMed ID: 34147990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process.
    Jahromi FG; Ghahreman A
    J Hazard Mater; 2018 Oct; 360():631-638. PubMed ID: 30153628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid oxidation and immobilization of arsenic by contact glow discharge plasma in acidic solution.
    Jiang B; Hu P; Zheng X; Zheng J; Tan M; Wu M; Xue Q
    Chemosphere; 2015 Apr; 125():220-6. PubMed ID: 25600320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient reductive recovery of arsenic from acidic wastewater by a UV/dithionite process.
    Yang X; Peng X; Lu X; He M; Yan J; Kong L
    Water Res; 2024 Nov; 265():122299. PubMed ID: 39180954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel strategy for reusing agricultural mulch film residual by iron modification for arsenic removal in gold-smelting wastewater.
    Zhang X; Zhao K; Shi X; Tian Z; Huang Z; Zhao L
    Front Chem; 2022; 10():1036726. PubMed ID: 36353147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution.
    Jia Y; Zhang D; Pan R; Xu L; Demopoulos GP
    Water Res; 2012 Feb; 46(2):500-8. PubMed ID: 22142599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags.
    Yin NH; Sivry Y; Guyot F; Lens PN; van Hullebusch ED
    J Environ Manage; 2016 Sep; 180():310-23. PubMed ID: 27240207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly effective remediation of high arsenic-bearing wastewater using aluminum-containing waste residue.
    Yang N; Qi X; Li Y; Li G; Duan X
    J Environ Manage; 2023 Jan; 325(Pt A):116417. PubMed ID: 36257224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hematite-catalysed scorodite formation as a novel arsenic immobilisation strategy under ambient conditions.
    Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Ito M; Hiroyoshi N
    Chemosphere; 2019 Oct; 233():946-953. PubMed ID: 31340422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced removal of high-As(III) from Cl(-I)-diluted SO
    Yuan Z; Zhang G; Wu X; Ma X; Lin J; Wang S; Jia Y
    J Environ Sci (China); 2023 Feb; 124():31-41. PubMed ID: 36182140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide.
    Xie X; Cheng H
    Environ Int; 2019 Jun; 127():730-741. PubMed ID: 31003056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention.
    Jia Y; Demopoulos GP
    Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Solidification of Lead-Zinc Smelting Slag through Bentonite Supported Alkali-Activated Slag Cementitious Material.
    Mao Y; Muhammad F; Yu L; Xia M; Huang X; Jiao B; Shiau Y; Li D
    Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30925811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic removal from alkaline leaching solution using Fe (III) precipitation.
    Wang Y; Lv C; Xiao L; Fu G; Liu Y; Ye S; Chen Y
    Environ Technol; 2019 May; 40(13):1714-1720. PubMed ID: 29345188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe
    Tang L; Feng H; Tang J; Zeng G; Deng Y; Wang J; Liu Y; Zhou Y
    Water Res; 2017 Jun; 117():175-186. PubMed ID: 28391122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: Integrated biosorption and precipitation.
    Jia X; Ma L; Liu J; Liu P; Yu L; Zhou J; Li W; Zhou W; Dong Z
    J Hazard Mater; 2022 Mar; 426():127385. PubMed ID: 34929592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Zhang RY; Schippers A; Shu WS; Qian LX
    Water Res; 2021 Sep; 203():117539. PubMed ID: 34407485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.