These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35500633)

  • 1. Impacts of sampling-tube loss on quantitative analysis of gaseous semi-volatile organic compounds (SVOCs) using an SPME-based active sampler.
    Cao J; Xie S; Cheng Z; Li R; Xu Y; Huang H
    Chemosphere; 2022 Aug; 301():134780. PubMed ID: 35500633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive air sampling for semi-volatile organic chemicals.
    Wania F; Shunthirasingham C
    Environ Sci Process Impacts; 2020 Oct; 22(10):1925-2002. PubMed ID: 32822447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of polydimethylsiloxane and polyurethane foam passive air samplers for measuring semi volatile organic compounds using a novel exposure chamber design.
    Tromp PC; Beeltje H; Okeme JO; Vermeulen R; Pronk A; Diamond ML
    Chemosphere; 2019 Jul; 227():435-443. PubMed ID: 31003128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive indoor air sampling for consumer product chemicals: a field evaluation study.
    Dodson RE; Bessonneau V; Udesky JO; Nishioka M; McCauley M; Rudel RA
    J Expo Sci Environ Epidemiol; 2019 Jan; 29(1):95-108. PubMed ID: 30237551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation and guidelines for using polyurethane foam (PUF) passive air samplers in double-dome chambers to assess semi-volatile organic compounds (SVOCs) in non-industrial indoor environments.
    Bohlin P; Audy O; Škrdlíková L; Kukučka P; Vojta Š; Přibylová P; Prokeš R; Čupr P; Klánová J
    Environ Sci Process Impacts; 2014 Nov; 16(11):2617-26. PubMed ID: 25274245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of gas-phase concentrations of organophosphate flame retardants at the material surface using a midget emission cell coupled to solid-phase microextraction.
    Plaisance H; Ghislain M; Desauziers V
    Anal Chim Acta; 2021 Nov; 1186():339100. PubMed ID: 34756255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field Calibration and PAS-SIM Model Evaluation of the XAD-Based Passive Air Sampler for Semi-Volatile Organic Compounds.
    Li Y; Zhan F; Lei YD; Shunthirasingham C; Hung H; Wania F
    Environ Sci Technol; 2023 Jun; 57(25):9224-9233. PubMed ID: 37294067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using long-term air monitoring of semi-volatile organic compounds to evaluate the uncertainty in polyurethane-disk passive sampler-derived air concentrations.
    Holt E; Bohlin-Nizzetto P; Borůvková J; Harner T; Kalina J; Melymuk L; Klánová J
    Environ Pollut; 2017 Jan; 220(Pt B):1100-1111. PubMed ID: 27865659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A needle trap device method for sampling and analysis of semi-volatile organic compounds in air.
    Li H; Bi C; Li X; Xu Y
    Chemosphere; 2020 Jul; 250():126284. PubMed ID: 32234620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaches for estimating PUF-air partitions coefficient for semi-volatile organic compounds: A critical comparison.
    Okeme JO; Webster EM; Parnis JM; Diamond ML
    Chemosphere; 2017 Feb; 168():199-204. PubMed ID: 27783960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field comparison of passive polyurethane foam and active air sampling techniques for analysis of gas-phase semi-volatile organic compounds at a remote high-mountain site.
    Prats RM; van Drooge BL; Fernández P; Grimalt JO
    Sci Total Environ; 2022 Jan; 803():149738. PubMed ID: 34481164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Personal Aerosol Sampler for Monitoring the Particle-Vapour Fractionation of SVOCs in Workplaces.
    Dragan GC; Kohlmeier V; Orasche J; Schnelle-Kreis J; Forbes PBC; Breuer D; Zimmermann R
    Ann Work Expo Health; 2020 Oct; 64(8):903-908. PubMed ID: 32720693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyurethane Foam Face Masks as a Dosimeter for Quantifying Personal Exposure to Airborne Volatile and Semi-Volatile Organic Compounds.
    Sun Z; Guo W; Chan CK; Jin L; Griffith SM; Yu JZ; Chan W
    Chem Res Toxicol; 2022 Sep; 35(9):1604-1613. PubMed ID: 35972223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-resolved gas-particle partitioning characteristics of typical semi-volatile organic compounds in urban atmosphere.
    Wang SQ; Hu YJ; Yuan YF; Hu ZC; Wu CC; Bao LJ; Zeng EY
    Environ Pollut; 2023 Mar; 320():121101. PubMed ID: 36669720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling artifacts in active air sampling of semivolatile organic contaminants: Comparing theoretical and measured artifacts and evaluating implications for monitoring networks.
    Melymuk L; Bohlin-Nizzetto P; Prokeš R; Kukučka P; Klánová J
    Environ Pollut; 2016 Oct; 217():97-106. PubMed ID: 26743995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines--a comparative study.
    Mendes B; Gonçalves J; Câmara JS
    Talanta; 2012 Jan; 88():79-94. PubMed ID: 22265473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of silicone for passive sampling of semivolatile organic contaminants in indoor air.
    Sedlačková L; Melymuk L; Vrana B
    Chemosphere; 2021 Sep; 279():130536. PubMed ID: 33873065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current challenges in air sampling of semivolatile organic contaminants: sampling artifacts and their influence on data comparability.
    Melymuk L; Bohlin P; Sáňka O; Pozo K; Klánová J
    Environ Sci Technol; 2014 Dec; 48(24):14077-91. PubMed ID: 25329599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle/gas partitioning for semi-volatile organic compounds (SVOCs) in Level III multimedia fugacity models: Gaseous emissions.
    Li YF; Qin M; Yang PF; Hao S; Macdonald RW
    Sci Total Environ; 2021 Nov; 795():148729. PubMed ID: 34243005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds.
    Wei W; Mandin C; Blanchard O; Mercier F; Pelletier M; Le Bot B; Glorennec P; Ramalho O
    Sci Total Environ; 2016 Sep; 563-564():506-12. PubMed ID: 27152992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.