BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35500807)

  • 1. DARQ: Deep learning of quality control for stereotaxic registration of human brain MRI to the T1w MNI-ICBM 152 template.
    Fonov VS; Dadar M; Adni TPRG; Collins DL
    Neuroimage; 2022 Aug; 257():119266. PubMed ID: 35500807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of publicly available linear MRI stereotaxic registration techniques.
    Dadar M; Fonov VS; Collins DL;
    Neuroimage; 2018 Jul; 174():191-200. PubMed ID: 29548850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RegQCNET: Deep quality control for image-to-template brain MRI affine registration.
    Denis de Senneville B; Manjón JV; Coupé P
    Phys Med Biol; 2020 Nov; 65(22):225022. PubMed ID: 32906089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated quality control of rigid and affine registrations of T1w and T2w MRI in big data using machine learning.
    Tummala S; Thadikemalla VSG; Kreilkamp BAK; Dam EB; Focke NK
    Comput Biol Med; 2021 Dec; 139():104997. PubMed ID: 34753079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans.
    Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J
    Elife; 2022 Dec; 11():. PubMed ID: 36546674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning, data ramping, and uncertainty estimation for detecting artifacts in large, imbalanced databases of MRI images.
    Pizarro R; Assemlal HE; Jegathambal SKB; Jubault T; Antel S; Arnold D; Shmuel A
    Med Image Anal; 2023 Dec; 90():102942. PubMed ID: 37797482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-atlas image registration of clinical data with automated quality assessment using ventricle segmentation.
    Dubost F; Bruijne M; Nardin M; Dalca AV; Donahue KL; Giese AK; Etherton MR; Wu O; Groot M; Niessen W; Vernooij M; Rost NS; Schirmer MD
    Med Image Anal; 2020 Jul; 63():101698. PubMed ID: 32339896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion MRI data analysis assisted by deep learning synthesized anatomical images (DeepAnat).
    Li Z; Fan Q; Bilgic B; Wang G; Wu W; Polimeni JR; Miller KL; Huang SY; Tian Q
    Med Image Anal; 2023 May; 86():102744. PubMed ID: 36867912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian convolutional neural network based MRI brain extraction on nonhuman primates.
    Zhao G; Liu F; Oler JA; Meyerand ME; Kalin NH; Birn RM
    Neuroimage; 2018 Jul; 175():32-44. PubMed ID: 29604454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate and robust segmentation of neuroanatomy in T1-weighted MRI by combining spatial priors with deep convolutional neural networks.
    Novosad P; Fonov V; Collins DL;
    Hum Brain Mapp; 2020 Feb; 41(2):309-327. PubMed ID: 31633863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Data Quality Control in FDOPA brain PET Imaging using Deep Learning.
    Pontoriero AD; Nordio G; Easmin R; Giacomel A; Santangelo B; Jahuar S; Bonoldi I; Rogdaki M; Turkheimer F; Howes O; Veronese M
    Comput Methods Programs Biomed; 2021 Sep; 208():106239. PubMed ID: 34289438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated registration of multispectral MR vessel wall images of the carotid artery.
    van 't Klooster R; Staring M; Klein S; Kwee RM; Kooi ME; Reiber JH; Lelieveldt BP; van der Geest RJ
    Med Phys; 2013 Dec; 40(12):121904. PubMed ID: 24320515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic brain MRI motion artifact detection based on end-to-end deep learning is similarly effective as traditional machine learning trained on image quality metrics.
    Vakli P; Weiss B; Szalma J; Barsi P; Gyuricza I; Kemenczky P; Somogyi E; Nárai Á; Gál V; Hermann P; Vidnyánszky Z
    Med Image Anal; 2023 Aug; 88():102850. PubMed ID: 37263108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a convolutional neural network to the quality control of MRI defacing.
    Delbarre DJ; Santos L; Ganjgahi H; Horner N; McCoy A; Westerberg H; Häring DA; Nichols TE; Mallon AM
    Comput Biol Med; 2022 Dec; 151(Pt A):106211. PubMed ID: 36327884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-QCNet - A pipeline for automated artifact detection in diffusion MRI images.
    Ahmad A; Parker D; Dheer S; Samani ZR; Verma R
    Comput Med Imaging Graph; 2023 Jan; 103():102151. PubMed ID: 36502764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic review of (semi-)automatic quality control of T1-weighted MRI scans.
    Hendriks J; Mutsaerts HJ; Joules R; Peña-Nogales Ó; Rodrigues PR; Wolz R; Burchell GL; Barkhof F; Schrantee A
    Neuroradiology; 2024 Jan; 66(1):31-42. PubMed ID: 38047983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DBSegment: Fast and robust segmentation of deep brain structures considering domain generalization.
    Baniasadi M; Petersen MV; Gonçalves J; Horn A; Vlasov V; Hertel F; Husch A
    Hum Brain Mapp; 2023 Feb; 44(2):762-778. PubMed ID: 36250712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Deep Pose Estimation With Geodesic Loss for Image-to-Template Rigid Registration.
    Mohseni Salehi SS; Khan S; Erdogmus D; Gholipour A
    IEEE Trans Med Imaging; 2019 Feb; 38(2):470-481. PubMed ID: 30138909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template.
    Lancaster JL; Tordesillas-Gutiérrez D; Martinez M; Salinas F; Evans A; Zilles K; Mazziotta JC; Fox PT
    Hum Brain Mapp; 2007 Nov; 28(11):1194-205. PubMed ID: 17266101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FastSurfer - A fast and accurate deep learning based neuroimaging pipeline.
    Henschel L; Conjeti S; Estrada S; Diers K; Fischl B; Reuter M
    Neuroimage; 2020 Oct; 219():117012. PubMed ID: 32526386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.