These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 35501393)

  • 61. MOVIS: A multi-omics software solution for multi-modal time-series clustering, embedding, and visualizing tasks.
    Anžel A; Heider D; Hattab G
    Comput Struct Biotechnol J; 2022; 20():1044-1055. PubMed ID: 35284047
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A unified computational framework for single-cell data integration with optimal transport.
    Cao K; Gong Q; Hong Y; Wan L
    Nat Commun; 2022 Dec; 13(1):7419. PubMed ID: 36456571
    [TBL] [Abstract][Full Text] [Related]  

  • 63. scMultiSim: simulation of single cell multi-omics and spatial data guided by gene regulatory networks and cell-cell interactions.
    Li H; Zhang Z; Squires M; Chen X; Zhang X
    Res Sq; 2023 Sep; ():. PubMed ID: 37790516
    [TBL] [Abstract][Full Text] [Related]  

  • 64. scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection.
    Zhang Z; Sun H; Mariappan R; Chen X; Chen X; Jain MS; Efremova M; Teichmann SA; Rajan V; Zhang X
    Nat Commun; 2023 Jan; 14(1):384. PubMed ID: 36693837
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer.
    Kim SY; Choe EK; Shivakumar M; Kim D; Sohn KA
    Bioinformatics; 2021 Aug; 37(16):2405-2413. PubMed ID: 33543748
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Integrating biological knowledge and gene expression data using pathway-guided random forests: a benchmarking study.
    Seifert S; Gundlach S; Junge O; Szymczak S
    Bioinformatics; 2020 Aug; 36(15):4301-4308. PubMed ID: 32399562
    [TBL] [Abstract][Full Text] [Related]  

  • 67. NEMO: cancer subtyping by integration of partial multi-omic data.
    Rappoport N; Shamir R
    Bioinformatics; 2019 Sep; 35(18):3348-3356. PubMed ID: 30698637
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Deciphering spatial domains from spatial multi-omics with SpatialGlue.
    Long Y; Ang KS; Sethi R; Liao S; Heng Y; van Olst L; Ye S; Zhong C; Xu H; Zhang D; Kwok I; Husna N; Jian M; Ng LG; Chen A; Gascoigne NRJ; Gate D; Fan R; Xu X; Chen J
    Nat Methods; 2024 Sep; 21(9):1658-1667. PubMed ID: 38907114
    [TBL] [Abstract][Full Text] [Related]  

  • 69. AIME: Autoencoder-based integrative multi-omics data embedding that allows for confounder adjustments.
    Yu T
    PLoS Comput Biol; 2022 Jan; 18(1):e1009826. PubMed ID: 35081109
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spatial domain detection using contrastive self-supervised learning for spatial multi-omics technologies.
    Yao J; Yu J; Caffo B; Page SC; Martinowich K; Hicks SC
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352580
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MOSGAT: Uniting Specificity-Aware GATs and Cross Modal-Attention to Integrate Multi-Omics Data for Disease Diagnosis.
    Wu W; Wang S; Zhang Y; Yin W; Zhao Y; Pang S
    IEEE J Biomed Health Inform; 2024 Sep; 28(9):5624-5637. PubMed ID: 38889029
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CITEMO
    Hu H; Liu R; Zhao C; Lu Y; Xiong Y; Chen L; Jin J; Ma Y; Su J; Yu Z; Cheng F; Ye F; Liu L; Zhao Q; Shuai J
    RNA Biol; 2022 Jan; 19(1):290-304. PubMed ID: 35130112
    [TBL] [Abstract][Full Text] [Related]  

  • 73. SEraster: a rasterization preprocessing framework for scalable spatial omics data analysis.
    Aihara G; Clifton K; Chen M; Li Z; Atta L; Miller BF; Satija R; Hickey JW; Fan J
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38902953
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multi-omics integration in the age of million single-cell data.
    Miao Z; Humphreys BD; McMahon AP; Kim J
    Nat Rev Nephrol; 2021 Nov; 17(11):710-724. PubMed ID: 34417589
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bayesian integrative model for multi-omics data with missingness.
    Fang Z; Ma T; Tang G; Zhu L; Yan Q; Wang T; Celedón JC; Chen W; Tseng GC
    Bioinformatics; 2018 Nov; 34(22):3801-3808. PubMed ID: 30184058
    [TBL] [Abstract][Full Text] [Related]  

  • 76. scMEGA: single-cell multi-omic enhancer-based gene regulatory network inference.
    Li Z; Nagai JS; Kuppe C; Kramann R; Costa IG
    Bioinform Adv; 2023; 3(1):vbad003. PubMed ID: 36698768
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Single-cell multi-omic topic embedding reveals cell-type-specific and COVID-19 severity-related immune signatures.
    Zhou M; Zhang H; Baii Z; Mann-Krzisnik D; Wang F; Li Y
    bioRxiv; 2023 Jun; ():. PubMed ID: 36778483
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A fast, scalable and versatile tool for analysis of single-cell omics data.
    Zhang K; Zemke NR; Armand EJ; Ren B
    Nat Methods; 2024 Feb; 21(2):217-227. PubMed ID: 38191932
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Integrative phenotyping framework (iPF): integrative clustering of multiple omics data identifies novel lung disease subphenotypes.
    Kim S; Herazo-Maya JD; Kang DD; Juan-Guardela BM; Tedrow J; Martinez FJ; Sciurba FC; Tseng GC; Kaminski N
    BMC Genomics; 2015 Nov; 16():924. PubMed ID: 26560100
    [TBL] [Abstract][Full Text] [Related]  

  • 80. MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer.
    Wang X; Duan M; Li J; Ma A; Xu D; Li Z; Liu B; Ma Q
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.