These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 35501680)
1. Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding. Liu Y; Lim H; Xie L BMC Bioinformatics; 2022 May; 23(Suppl 3):158. PubMed ID: 35501680 [TBL] [Abstract][Full Text] [Related]
2. Deep semi-supervised learning via dynamic anchor graph embedding in latent space. Tu E; Wang Z; Yang J; Kasabov N Neural Netw; 2022 Feb; 146():350-360. PubMed ID: 34929418 [TBL] [Abstract][Full Text] [Related]
3. An effective self-supervised framework for learning expressive molecular global representations to drug discovery. Li P; Wang J; Qiao Y; Chen H; Yu Y; Yao X; Gao P; Xie G; Song S Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940598 [TBL] [Abstract][Full Text] [Related]
4. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136 [TBL] [Abstract][Full Text] [Related]
5. A unified deep semi-supervised graph learning scheme based on nodes re-weighting and manifold regularization. Dornaika F; Bi J; Zhang C Neural Netw; 2023 Jan; 158():188-196. PubMed ID: 36462365 [TBL] [Abstract][Full Text] [Related]
6. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation. Xiao Z; Su Y; Deng Z; Zhang W Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398 [TBL] [Abstract][Full Text] [Related]
7. Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning. Wang Y; Huang Y; Wang Q; Zhao C; Zhang Z; Chen J Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112285 [TBL] [Abstract][Full Text] [Related]
8. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification. Wang X; Chen H; Xiang H; Lin H; Lin X; Heng PA Med Image Anal; 2021 May; 70():102010. PubMed ID: 33677262 [TBL] [Abstract][Full Text] [Related]
10. Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images. Yellapragada B; Hornauer S; Snyder K; Yu S; Yiu G Ophthalmol Retina; 2022 Feb; 6(2):116-129. PubMed ID: 34217854 [TBL] [Abstract][Full Text] [Related]
11. A natural language processing approach based on embedding deep learning from heterogeneous compounds for quantitative structure-activity relationship modeling. Bouhedjar K; Boukelia A; Khorief Nacereddine A; Boucheham A; Belaidi A; Djerourou A Chem Biol Drug Des; 2020 Sep; 96(3):961-972. PubMed ID: 33058460 [TBL] [Abstract][Full Text] [Related]
12. BatmanNet: bi-branch masked graph transformer autoencoder for molecular representation. Wang Z; Feng Z; Li Y; Li B; Wang Y; Sha C; He M; Li X Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38033291 [TBL] [Abstract][Full Text] [Related]
13. A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning. Azadifar S; Ahmadi A BMC Bioinformatics; 2022 Oct; 23(1):422. PubMed ID: 36241966 [TBL] [Abstract][Full Text] [Related]
14. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding. Qu X; Du G; Hu J; Cai Y Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360 [TBL] [Abstract][Full Text] [Related]
15. GHNN: Graph Harmonic Neural Networks for semi-supervised graph-level classification. Ju W; Luo X; Ma Z; Yang J; Deng M; Zhang M Neural Netw; 2022 Jul; 151():70-79. PubMed ID: 35398673 [TBL] [Abstract][Full Text] [Related]
16. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
17. Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method. Wu Z; Jiang D; Hsieh CY; Chen G; Liao B; Cao D; Hou T Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866354 [TBL] [Abstract][Full Text] [Related]
18. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation. Enguehard J; O'Halloran P; Gholipour A IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive study of semi-supervised learning for DNA methylation-based supervised classification of central nervous system tumors. Tran QT; Alom MZ; Orr BA BMC Bioinformatics; 2022 Jun; 23(1):223. PubMed ID: 35676649 [TBL] [Abstract][Full Text] [Related]
20. Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network. Chen J; Si YW; Un CW; Siu SWI J Cheminform; 2021 Nov; 13(1):93. PubMed ID: 34838140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]