BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35501705)

  • 1. The efficacy of deep learning models in the diagnosis of endometrial cancer using MRI: a comparison with radiologists.
    Urushibara A; Saida T; Mori K; Ishiguro T; Inoue K; Masumoto T; Satoh T; Nakajima T
    BMC Med Imaging; 2022 Apr; 22(1):80. PubMed ID: 35501705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosing uterine cervical cancer on a single T2-weighted image: Comparison between deep learning versus radiologists.
    Urushibara A; Saida T; Mori K; Ishiguro T; Sakai M; Masuoka S; Satoh T; Masumoto T
    Eur J Radiol; 2021 Feb; 135():109471. PubMed ID: 33338759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosing Ovarian Cancer on MRI: A Preliminary Study Comparing Deep Learning and Radiologist Assessments.
    Saida T; Mori K; Hoshiai S; Sakai M; Urushibara A; Ishiguro T; Minami M; Satoh T; Nakajima T
    Cancers (Basel); 2022 Feb; 14(4):. PubMed ID: 35205735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation.
    Liu KL; Wu T; Chen PT; Tsai YM; Roth H; Wu MS; Liao WC; Wang W
    Lancet Digit Health; 2020 Jun; 2(6):e303-e313. PubMed ID: 33328124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Deep Learning with Convolutional Neural Network Approach to Identify the Invasion Depth of Endometrial Cancer in Myometrium Using MR Images: A Pilot Study.
    Dong HC; Dong HK; Yu MH; Lin YH; Chang CC
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32824765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images.
    Zhao HB; Liu C; Ye J; Chang LF; Xu Q; Shi BW; Liu LL; Yin YL; Shi BB
    Endokrynol Pol; 2021; 72(3):217-225. PubMed ID: 33619712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of carcinosarcoma from endometrial carcinoma on magnetic resonance imaging using deep learning.
    Saida T; Mori K; Hoshiai S; Sakai M; Urushibara A; Ishiguro T; Satoh T; Nakajima T
    Pol J Radiol; 2022; 87():e521-e529. PubMed ID: 36250139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
    Hamm CA; Wang CJ; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Duncan JS; Weinreb JC; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3338-3347. PubMed ID: 31016442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning classification of inverted papilloma malignant transformation using 3D convolutional neural networks and magnetic resonance imaging.
    Liu GS; Yang A; Kim D; Hojel A; Voevodsky D; Wang J; Tong CCL; Ungerer H; Palmer JN; Kohanski MA; Nayak JV; Hwang PH; Adappa ND; Patel ZM
    Int Forum Allergy Rhinol; 2022 Aug; 12(8):1025-1033. PubMed ID: 34989484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: The Manitoba Bone Mineral Density Registry.
    Monchka BA; Kimelman D; Lix LM; Leslie WD
    Bone; 2021 Sep; 150():116017. PubMed ID: 34020078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data.
    Zhen SH; Cheng M; Tao YB; Wang YF; Juengpanich S; Jiang ZY; Jiang YK; Yan YY; Lu W; Lue JM; Qian JH; Wu ZY; Sun JH; Lin H; Cai XJ
    Front Oncol; 2020; 10():680. PubMed ID: 32547939
    [No Abstract]   [Full Text] [Related]  

  • 14. A Deep Learning Approach for MRI in the Diagnosis of Labral Injuries of the Hip Joint.
    Ni M; Wen X; Chen W; Zhao Y; Yuan Y; Zeng P; Wang Q; Wang Y; Yuan H
    J Magn Reson Imaging; 2022 Aug; 56(2):625-634. PubMed ID: 35081273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning enables the differentiation between early and late stages of hip avascular necrosis.
    Klontzas ME; Vassalou EE; Spanakis K; Meurer F; Woertler K; Zibis A; Marias K; Karantanas AH
    Eur Radiol; 2024 Feb; 34(2):1179-1186. PubMed ID: 37581656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiating Benign from Malignant Renal Tumors Using T2- and Diffusion-Weighted Images: A Comparison of Deep Learning and Radiomics Models Versus Assessment from Radiologists.
    Xu Q; Zhu Q; Liu H; Chang L; Duan S; Dou W; Li S; Ye J
    J Magn Reson Imaging; 2022 Apr; 55(4):1251-1259. PubMed ID: 34462986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [High definition MRI rectal lymph node aided diagnostic system based on deep neural network].
    Zhou YP; Li S; Zhang XX; Zhang ZD; Gao YX; Ding L; Lu Y
    Zhonghua Wai Ke Za Zhi; 2019 Feb; 57(2):108-113. PubMed ID: 30704213
    [No Abstract]   [Full Text] [Related]  

  • 18. Deep convolutional neural network for classification of thyroid nodules on ultrasound: Comparison of the diagnostic performance with that of radiologists.
    Kim YJ; Choi Y; Hur SJ; Park KS; Kim HJ; Seo M; Lee MK; Jung SL; Jung CK
    Eur J Radiol; 2022 Jul; 152():110335. PubMed ID: 35512512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for the determination of myometrial invasion depth and automatic lesion identification in endometrial cancer MR imaging: a preliminary study in a single institution.
    Chen X; Wang Y; Shen M; Yang B; Zhou Q; Yi Y; Liu W; Zhang G; Yang G; Zhang H
    Eur Radiol; 2020 Sep; 30(9):4985-4994. PubMed ID: 32337640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.