These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35502018)

  • 21. Prediction of manifest refraction using machine learning ensemble models on wavefront aberrometry data.
    Hernández CS; Gil A; Casares I; Poderoso J; Wehse A; Dave SR; Lim D; Sánchez-Montañés M; Lage E
    J Optom; 2022; 15 Suppl 1(Suppl 1):S22-S31. PubMed ID: 35431181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy evaluation of objective refraction using the wavefront aberrometer in pseudophakic eyes.
    Hou M; Ding Y; Liu L; Xu Y; Li J; Wu M
    Graefes Arch Clin Exp Ophthalmol; 2020 Oct; 258(10):2213-2221. PubMed ID: 32577855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eccentric small-zone ray tracing wavefront aberrometry for refraction in keratoconus.
    Fredriksson A; Behndig A
    Acta Ophthalmol; 2016 Nov; 94(7):679-684. PubMed ID: 27496244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of subjective refraction with a clinical adaptive optics visual simulator.
    Hervella L; Villegas EA; Prieto PM; Artal P
    J Cataract Refract Surg; 2019 Jan; 45(1):87-93. PubMed ID: 30309774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repeatability and agreement of Scheimpflug-based and swept-source optical biometry measurements.
    Sel S; Stange J; Kaiser D; Kiraly L
    Cont Lens Anterior Eye; 2017 Oct; 40(5):318-322. PubMed ID: 28342729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accuracy of refractive outcomes in myopic and hyperopic laser in situ keratomileusis: Manifest versus aberrometric refraction.
    Reinstein DZ; Morral M; Gobbe M; Archer TJ
    J Cataract Refract Surg; 2012 Nov; 38(11):1989-95. PubMed ID: 23079314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wavefront analyzers induce instrument myopia.
    Cervino A; Hosking SL; Rai GK; Naroo SA; Gilmartin B
    J Refract Surg; 2006 Oct; 22(8):795-803. PubMed ID: 17061717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of keratometric measurements between color light-emitting diode topography and Scheimpflug camera.
    Cui XH; Yoo YS; An Y; Joo CK
    BMC Ophthalmol; 2019 Apr; 19(1):98. PubMed ID: 31027491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy of the WASCA aberrometer refraction compared to manifest refraction in myopia.
    Reinstein DZ; Archer TJ; Couch D
    J Refract Surg; 2006 Mar; 22(3):268-74. PubMed ID: 16602316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Reliability and Acceptability of RDx-Based Tele-Controlled Subjective Refraction Compared with Traditional Subjective Refraction.
    Huang J; Li X; Yan T; Wen L; Pan L; Yang Z
    Transl Vis Sci Technol; 2022 Nov; 11(11):16. PubMed ID: 36394842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and Clinical Evaluation of a Handheld Wavefront Autorefractor.
    Durr NJ; Dave SR; Vera-Diaz FA; Lim D; Dorronsoro C; Marcos S; Thorn F; Lage E
    Optom Vis Sci; 2015 Dec; 92(12):1140-7. PubMed ID: 26580271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Comparative analyses between clinical refraction and automatic refraction obtained through a wave front sensor].
    de Freitas W; Melo Júnior LA; Schor P; Campos M
    Arq Bras Oftalmol; 2007; 70(4):677-82. PubMed ID: 17906765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Agreement Between Swept-Source Optical Biometry and Scheimpflug-based Topography Measurements of Anterior Segment Parameters.
    Özyol P; Özyol E
    Am J Ophthalmol; 2016 Sep; 169():73-78. PubMed ID: 27320057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accuracy, repeatability, and clinical application of spherocylindrical automated refraction using time-based wavefront aberrometry measurements.
    Nissman SA; Tractenberg RE; Saba CM; Douglas JC; Lustbader JM
    Ophthalmology; 2006 Apr; 113(4):577.e1-2. PubMed ID: 16527354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of trifocal intraocular lenses on standard autorefraction and aberrometer-based autorefraction.
    Garzón N; García-Montero M; López-Artero E; Poyales F; Albarrán-Diego C
    J Cataract Refract Surg; 2019 Sep; 45(9):1265-1274. PubMed ID: 31326229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Objective and subjective preoperative refraction techniques for wavefront-optimized and wavefront-guided laser in situ keratomileusis.
    Perez-Straziota CE; Randleman JB; Stulting RD
    J Cataract Refract Surg; 2009 Feb; 35(2):256-9. PubMed ID: 19185239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autorefraction as an outcome measure of laser in situ keratomileusis.
    Pesudovs K
    J Cataract Refract Surg; 2004 Sep; 30(9):1921-8. PubMed ID: 15342056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assessment of refractive errors using a simple optical approach.
    Leube A; Kraft C; Ohlendorf A; Wahl S
    Clin Exp Optom; 2018 May; 101(3):386-391. PubMed ID: 29356102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of the pentacam true net corneal power for intraocular lens calculation in eyes after refractive corneal surgery.
    Kim SW; Kim EK; Cho BJ; Kim SW; Song KY; Kim TI
    J Refract Surg; 2009 Mar; 25(3):285-9. PubMed ID: 19370824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Comparison Between Refraction From an Adaptive Optics Visual Simulator and Clinical Refractions.
    Tabernero J; Otero C; Pardhan S
    Transl Vis Sci Technol; 2020 Jun; 9(7):23. PubMed ID: 32832229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.