BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35502142)

  • 21. Liquid-crystalline assembly of spherical cellulose nanocrystals.
    Liu B; Cheng L; Yuan Y; Hu J; Zhou L; Zong L; Duan Y; Zhang J
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124738. PubMed ID: 37169056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Freeze-Thaw Cycling Induced Isotropic-Nematic Coexistence of Amyloid Fibrils Suspensions.
    Zhao J; Bolisetty S; Adamcik J; Han J; Fernández-Ronco MP; Mezzenga R
    Langmuir; 2016 Mar; 32(10):2492-9. PubMed ID: 26907697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions.
    Park JH; Noh J; Schütz C; Salazar-Alvarez G; Scalia G; Bergström L; Lagerwall JP
    Chemphyschem; 2014 May; 15(7):1477-84. PubMed ID: 24677344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shear-Coated Linear Birefringent and Chiral Cellulose Nanocrystal Films Prepared from Non-Sonicated Suspensions with Different Storage Time.
    Juárez-Rivera OR; Mauricio-Sánchez RA; Järrendahl K; Arwin H; Mendoza-Galván A
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic polymer composites synthesized by immobilizing cellulose nanocrystal suspensions specifically oriented under magnetic fields.
    Tatsumi M; Kimura F; Kimura T; Teramoto Y; Nishio Y
    Biomacromolecules; 2014 Dec; 15(12):4579-89. PubMed ID: 25390070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment.
    Hirai A; Inui O; Horii F; Tsuji M
    Langmuir; 2009 Jan; 25(1):497-502. PubMed ID: 19055323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals.
    Abitbol T; Kam D; Levi-Kalisman Y; Gray DG; Shoseyov O
    Langmuir; 2018 Apr; 34(13):3925-3933. PubMed ID: 29513998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adjustment of the Chiral Nematic Phase Properties of Cellulose Nanocrystals by Polymer Grafting.
    Azzam F; Heux L; Jean B
    Langmuir; 2016 May; 32(17):4305-12. PubMed ID: 27054465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the cholesteric pitch of apolar cellulose nanocrystal suspensions using a chiral hard-bundle model.
    Chiappini M; Dussi S; Frka-Petesic B; Vignolini S; Dijkstra M
    J Chem Phys; 2022 Jan; 156(1):014904. PubMed ID: 34998357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capillary Flow Characterizations of Chiral Nematic Cellulose Nanocrystal Suspensions.
    Esmaeili M; George K; Rezvan G; Taheri-Qazvini N; Zhang R; Sadati M
    Langmuir; 2022 Feb; 38(7):2192-2204. PubMed ID: 35133841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Twist-Bend Stage in the Relaxation of Sheared Chiral Nematic Suspensions of Cellulose Nanocrystals.
    Gray DG; Mu X
    ACS Omega; 2016 Aug; 1(2):212-219. PubMed ID: 31457126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nano-to-meso structure of cellulose nanocrystal phases in ethylene-glycol-water mixtures.
    Attia D; Cohen N; Ochbaum G; Levi-Kalisman Y; Bitton R; Yerushalmi-Rozen R
    Soft Matter; 2020 Sep; 16(36):8444-8452. PubMed ID: 32812986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and transformation of tactoids in cellulose nanocrystal suspensions.
    Wang PX; Hamad WY; MacLachlan MJ
    Nat Commun; 2016 May; 7():11515. PubMed ID: 27143197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liquid Crystalline Properties of Symmetric and Asymmetric End-Grafted Cellulose Nanocrystals.
    Delepierre G; Traeger H; Adamcik J; Cranston ED; Weder C; Zoppe JO
    Biomacromolecules; 2021 Aug; 22(8):3552-3564. PubMed ID: 34297531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retrieving the Coassembly Pathway of Composite Cellulose Nanocrystal Photonic Films from their Angular Optical Response.
    Frka-Petesic B; Kelly JA; Jacucci G; Guidetti G; Kamita G; Crossette NP; Hamad WY; MacLachlan MJ; Vignolini S
    Adv Mater; 2020 May; 32(19):e1906889. PubMed ID: 32249481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Infiltration of Proteins in Cholesteric Cellulose Structures.
    Bast LK; Klockars KW; Greca LG; Rojas OJ; Tardy BL; Bruns N
    Biomacromolecules; 2021 May; 22(5):2067-2080. PubMed ID: 33899466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. All-Aqueous Liquid Crystal Nanocellulose Emulsions with Permeable Interfacial Assembly.
    Bai L; Huan S; Zhao B; Zhu Y; Esquena J; Chen F; Gao G; Zussman E; Chu G; Rojas OJ
    ACS Nano; 2020 Oct; 14(10):13380-13390. PubMed ID: 32946222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exclusion and Trapping of Carbon Nanostructures in Nonisotropic Suspensions of Cellulose Nanostructures.
    Mendelson O; Chu G; Ziv E; Levi-Kalisman Y; Vasilyev G; Zussman E; Yerushalmi-Rozen R
    J Phys Chem B; 2019 Apr; 123(16):3535-3542. PubMed ID: 30939005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The angular optical response of cellulose nanocrystal films explained by the distortion of the arrested suspension upon drying.
    Frka-Petesic B; Kamita G; Guidetti G; Vignolini S
    Phys Rev Mater; 2019 Apr; 3(4):. PubMed ID: 33225202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.