BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35502142)

  • 41. Ultrasensitive Magnetic Tuning of Optical Properties of Films of Cholesteric Cellulose Nanocrystals.
    Chen T; Zhao Q; Meng X; Li Y; Peng H; Whittaker AK; Zhu S
    ACS Nano; 2020 Aug; 14(8):9440-9448. PubMed ID: 32574040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Origin of vacuum-assisted chiral self-assembly of cellulose nanocrystals.
    Wang Z; Yuan Y; Hu J; Yang J; Feng F; Yu Y; Liu P; Men Y; Zhang J
    Carbohydr Polym; 2020 Oct; 245():116459. PubMed ID: 32718601
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals.
    Duan C; Cheng Z; Wang B; Zeng J; Xu J; Li J; Gao W; Chen K
    Small; 2021 Jul; 17(30):e2007306. PubMed ID: 34047461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulating the chiral nanoarchitecture of cellulose nanocrystals through interaction with salts and polymer.
    Lin M; Singh Raghuwanshi V; Browne C; Simon GP; Garnier G
    J Colloid Interface Sci; 2022 May; 613():207-217. PubMed ID: 35033766
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced Alignment of Water-Soluble Polythiophene Using Cellulose Nanocrystals as a Liquid Crystal Template.
    Risteen BE; Blake A; McBride MA; Rosu C; Park JO; Srinivasarao M; Russo PS; Reichmanis E
    Biomacromolecules; 2017 May; 18(5):1556-1562. PubMed ID: 28296384
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase transition and gelation in cellulose nanocrystal-based aqueous suspensions studied by SANS.
    Xu Y; Gilbert EP; Sokolova A; Stokes JR
    J Colloid Interface Sci; 2024 Mar; 658():660-670. PubMed ID: 38134674
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of Ionic Surfactants on the Viscoelastic Properties of Chiral Nematic Cellulose Nanocrystal Suspensions.
    Ranjbar D; Hatzikiriakos SG
    Langmuir; 2020 Jan; 36(1):293-301. PubMed ID: 31845815
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellulose nanocrystals suspensions: Liquid crystal anisotropy, rheology and films iridescence.
    Casado U; Mucci VL; Aranguren MI
    Carbohydr Polym; 2021 Jun; 261():117848. PubMed ID: 33766344
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS.
    Pignon F; Challamel M; De Geyer A; Elchamaa M; Semeraro EF; Hengl N; Jean B; Putaux JL; Gicquel E; Bras J; Prevost S; Sztucki M; Narayanan T; Djeridi H
    Carbohydr Polym; 2021 May; 260():117751. PubMed ID: 33712121
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rod Packing in Chiral Nematic Cellulose Nanocrystal Dispersions Studied by Small-Angle X-ray Scattering and Laser Diffraction.
    Schütz C; Agthe M; Fall AB; Gordeyeva K; Guccini V; Salajková M; Plivelic TS; Lagerwall JP; Salazar-Alvarez G; Bergström L
    Langmuir; 2015 Jun; 31(23):6507-13. PubMed ID: 26020691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Benchmarking Cellulose Nanocrystals Part II: New Industrially Produced Materials.
    Delepierre G; Vanderfleet OM; Niinivaara E; Zakani B; Cranston ED
    Langmuir; 2021 Jul; 37(28):8393-8409. PubMed ID: 34250804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique.
    Chen Q; Liu P; Nan F; Zhou L; Zhang J
    Biomacromolecules; 2014 Nov; 15(11):4343-50. PubMed ID: 25300554
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-assembly of cellulose nanocrystals of different lengths.
    Raghuwanshi VS; Browne C; Batchelor W; Garnier G
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):249-259. PubMed ID: 36327727
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of surface properties of cellulose nanocrystals through adsorption of tannic acid and alkyl cellulose derivatives.
    D'Acierno F; Capron I
    Carbohydr Polym; 2023 Nov; 319():121159. PubMed ID: 37567688
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films.
    Natarajan B; Emiroglu C; Obrzut J; Fox DM; Pazmino B; Douglas JF; Gilman JW
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14222-14231. PubMed ID: 28394559
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Induced phase separation in low-ionic-strength cellulose nanocrystal suspensions containing high-molecular-weight blue dextrans.
    Beck-Candanedo S; Viet D; Gray DG
    Langmuir; 2006 Oct; 22(21):8690-5. PubMed ID: 17014106
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Digital color in cellulose nanocrystal films.
    Dumanli AG; van der Kooij HM; Kamita G; Reisner E; Baumberg JJ; Steiner U; Vignolini S
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12302-6. PubMed ID: 25007291
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Freeze-Thaw Gelation of Cellulose Nanocrystals.
    Lewis L; Hatzikiriakos SG; Hamad WY; MacLachlan MJ
    ACS Macro Lett; 2019 May; 8(5):486-491. PubMed ID: 35619375
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controlling the Nematic Liquid Crystallinity of Cellulose Nanocrystals with an Alcohol Ethoxy Sulfonate Surfactant.
    Majoinen J; Gustavsson L; Wani O; Kiefer S; Liljeström V; Rojas OJ; Rannou P; Ikkala O
    Biomacromolecules; 2024 Mar; ():. PubMed ID: 38507559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.