These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 35502383)
1. Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network. Deng F; Wan Q; Zeng Y; Shi Y; Wu H; Wu Y; Xu W; Mok GSP; Zhang X; Hu Z Quant Imaging Med Surg; 2022 May; 12(5):2755-2766. PubMed ID: 35502383 [TBL] [Abstract][Full Text] [Related]
2. Correcting motion artifacts in coronary computed tomography angiography images using a dual-zone cycle generative adversarial network. Deng F; Tie C; Zeng Y; Shi Y; Wu H; Wu Y; Liang D; Liu X; Zheng H; Zhang X; Hu Z J Xray Sci Technol; 2021; 29(4):577-595. PubMed ID: 33935130 [TBL] [Abstract][Full Text] [Related]
3. Motion artifact removal in coronary CT angiography based on generative adversarial networks. Zhang L; Jiang B; Chen Q; Wang L; Zhao K; Zhang Y; Vliegenthart R; Xie X Eur Radiol; 2023 Jan; 33(1):43-53. PubMed ID: 35829786 [TBL] [Abstract][Full Text] [Related]
4. The synthesis of high-energy CT images from low-energy CT images using an improved cycle generative adversarial network. Zhou H; Liu X; Wang H; Chen Q; Wang R; Pang ZF; Zhang Y; Hu Z Quant Imaging Med Surg; 2022 Jan; 12(1):28-42. PubMed ID: 34993058 [TBL] [Abstract][Full Text] [Related]
5. Motion artefact reduction in coronary CT angiography images with a deep learning method. Ren P; He Y; Zhu Y; Zhang T; Cao J; Wang Z; Yang Z BMC Med Imaging; 2022 Oct; 22(1):184. PubMed ID: 36307787 [TBL] [Abstract][Full Text] [Related]
6. Motion artifact correction in cardiac CT using cross-phase temporospatial information and synergistic attention gate and spatial transformer sub-networks. Gong H; Ahmed Z; Chang S; Koons EK; Thorne JE; Rajiah P; Foley TA; Fletcher JG; McCollough CH; Leng S Phys Med Biol; 2024 Feb; 69(3):. PubMed ID: 38181426 [No Abstract] [Full Text] [Related]
7. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks. Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765 [TBL] [Abstract][Full Text] [Related]
8. Half-scan artifact correction using generative adversarial network for dental CT. Hegazy MAA; Cho MH; Lee SY Comput Biol Med; 2021 May; 132():104313. PubMed ID: 33705996 [TBL] [Abstract][Full Text] [Related]
9. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients. Zhang Y; Ding SG; Gong XC; Yuan XX; Lin JF; Chen Q; Li JG Technol Cancer Res Treat; 2022; 21():15330338221085358. PubMed ID: 35262422 [No Abstract] [Full Text] [Related]
10. Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Johnson PM; Drangova M Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909 [TBL] [Abstract][Full Text] [Related]
11. Undersampling artifact reduction for free-breathing 3D stack-of-radial MRI based on a deep adversarial learning network. Gao C; Ghodrati V; Shih SF; Wu HH; Liu Y; Nickel MD; Vahle T; Dale B; Sai V; Felker E; Surawech C; Miao Q; Finn JP; Zhong X; Hu P Magn Reson Imaging; 2023 Jan; 95():70-79. PubMed ID: 36270417 [TBL] [Abstract][Full Text] [Related]
12. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks. Shi Z; Li H; Cao Q; Wang Z; Cheng M Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of motion artifact metrics for coronary CT angiography. Ma H; Gros E; Szabo A; Baginski SG; Laste ZR; Kulkarni NM; Okerlund D; Schmidt TG Med Phys; 2018 Feb; 45(2):687-702. PubMed ID: 29222954 [TBL] [Abstract][Full Text] [Related]
14. Synthetic high-energy computed tomography image via a Wasserstein generative adversarial network with the convolutional block attention module. Kong H; Yuan Z; Zhou H; Liang G; Yan Z; Cheng G; Hu Z Quant Imaging Med Surg; 2023 Jul; 13(7):4365-4379. PubMed ID: 37456308 [TBL] [Abstract][Full Text] [Related]
15. CT artifact correction for sparse and truncated projection data using generative adversarial networks. Podgorsak AR; Shiraz Bhurwani MM; Ionita CN Med Phys; 2021 Feb; 48(2):615-626. PubMed ID: 32996149 [TBL] [Abstract][Full Text] [Related]
16. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images. Zhao M; Wei Y; Wong KKL Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953 [TBL] [Abstract][Full Text] [Related]
17. Retrospective correction of motion-affected MR images using deep learning frameworks. Küstner T; Armanious K; Yang J; Yang B; Schick F; Gatidis S Magn Reson Med; 2019 Oct; 82(4):1527-1540. PubMed ID: 31081955 [TBL] [Abstract][Full Text] [Related]
18. Correction of out-of-FOV motion artifacts using convolutional neural network. Wang C; Liang Y; Wu Y; Zhao S; Du YP Magn Reson Imaging; 2020 Sep; 71():93-102. PubMed ID: 32464243 [TBL] [Abstract][Full Text] [Related]
19. Dynamic controllable residual generative adversarial network for low-dose computed tomography imaging. Xia Z; Liu J; Kang Y; Wang Y; Hu D; Zhang Y Quant Imaging Med Surg; 2023 Aug; 13(8):5271-5293. PubMed ID: 37581059 [TBL] [Abstract][Full Text] [Related]
20. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network. Cui J; Gong K; Han P; Liu H; Li Q Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]