These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35502700)

  • 1. Simplified, Shear Induced Generation of Double Emulsions for Robust Compartmentalization during Single Genome Analysis.
    Cowell TW; Dobria A; Han HS
    ACS Appl Mater Interfaces; 2022 May; 14(18):20528-20537. PubMed ID: 35502700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Emulsion Flow Cytometry for Rapid Single Genome Detection.
    Cowell T; Han HS
    Methods Mol Biol; 2023; 2689():155-167. PubMed ID: 37430053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet microfluidics driven by gradients of confinement.
    Dangla R; Kayi SC; Baroud CN
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):853-8. PubMed ID: 23284169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled formation of double-emulsion drops in sudden expansion channels.
    Kim SH; Kim B
    J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem emulsification for high-throughput production of double emulsions.
    Eggersdorfer ML; Zheng W; Nawar S; Mercandetti C; Ofner A; Leibacher I; Koehler S; Weitz DA
    Lab Chip; 2017 Feb; 17(5):936-942. PubMed ID: 28197593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions.
    Hou L; Ren Y; Jia Y; Deng X; Liu W; Feng X; Jiang H
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12282-12289. PubMed ID: 28345345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane.
    Kim SH; Jeon SJ; Yang SM
    J Am Chem Soc; 2008 May; 130(18):6040-6. PubMed ID: 18393502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet based microfluidics.
    Seemann R; Brinkmann M; Pfohl T; Herminghaus S
    Rep Prog Phys; 2012 Jan; 75(1):016601. PubMed ID: 22790308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable production of double emulsion drops with thin shells.
    Vian A; Reuse B; Amstad E
    Lab Chip; 2018 Jun; 18(13):1936-1942. PubMed ID: 29881836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplets formation and merging in two-phase flow microfluidics.
    Gu H; Duits MH; Mugele F
    Int J Mol Sci; 2011; 12(4):2572-97. PubMed ID: 21731459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics.
    Deng NN; Wang W; Ju XJ; Xie R; Weitz DA; Chu LY
    Lab Chip; 2013 Oct; 13(20):4047-52. PubMed ID: 23948718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization Study of Oil-in-Water-in-Oil (O/W/O) Double Emulsion Formation in a Simple and Robust Co-Flowing Microfluidic Device.
    Lu P; Wu L; Liu X
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonspherical double emulsions with multiple distinct cores enveloped by ultrathin shells.
    Lee SS; Abbaspourrad A; Kim SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1294-300. PubMed ID: 24381982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-talk between emulsion drops: how are hydrophilic reagents transported across oil phases?
    Etienne G; Vian A; Biočanin M; Deplancke B; Amstad E
    Lab Chip; 2018 Dec; 18(24):3903-3912. PubMed ID: 30465575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of particle concentration on multiple droplet formation in Pickering emulsions.
    Whitby CP; Parthipan R
    J Colloid Interface Sci; 2019 Oct; 554():315-323. PubMed ID: 31302369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell Infection of Influenza A Virus Using Drop-Based Microfluidics.
    Loveday EK; Sanchez HS; Thomas MM; Chang CB
    Microbiol Spectr; 2022 Oct; 10(5):e0099322. PubMed ID: 36125315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Break-up of droplets in a concentrated emulsion flowing through a narrow constriction.
    Rosenfeld L; Fan L; Chen Y; Swoboda R; Tang SK
    Soft Matter; 2014 Jan; 10(3):421-30. PubMed ID: 24651830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.