These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35502700)

  • 21. Monodisperse Selectively Permeable Hydrogel Capsules Made from Single Emulsion Drops.
    Steinacher M; Cont A; Du H; Persat A; Amstad E
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15601-15609. PubMed ID: 33764041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Cell Infection of Influenza A Virus Using Drop-Based Microfluidics.
    Loveday EK; Sanchez HS; Thomas MM; Chang CB
    Microbiol Spectr; 2022 Oct; 10(5):e0099322. PubMed ID: 36125315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.
    Chan HF; Ma S; Tian J; Leong KW
    Nanoscale; 2017 Mar; 9(10):3485-3495. PubMed ID: 28239692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell.
    Choi CH; Wang H; Lee H; Kim JH; Zhang L; Mao A; Mooney DJ; Weitz DA
    Lab Chip; 2016 Apr; 16(9):1549-55. PubMed ID: 27070224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence.
    Ho TM; Razzaghi A; Ramachandran A; Mikkonen KS
    Adv Colloid Interface Sci; 2022 Jan; 299():102541. PubMed ID: 34920366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid, Simple, and Inexpensive Spatial Patterning of Wettability in Microfluidic Devices for Double Emulsion Generation.
    Liu H; Piper JA; Li M
    Anal Chem; 2021 Aug; 93(31):10955-10965. PubMed ID: 34323465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions.
    Leister N; Vladisavljević GT; Karbstein HP
    J Colloid Interface Sci; 2022 Apr; 611():451-461. PubMed ID: 34968964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double emulsions with controlled morphology by microgel scaffolding.
    Thiele J; Seiffert S
    Lab Chip; 2011 Sep; 11(18):3188-92. PubMed ID: 21796282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions.
    Vallapurackal J; Stucki A; Liang AD; Klehr J; Dittrich PS; Ward TR
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202207328. PubMed ID: 36130864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic formation of highly monodispersed multiple cored droplets using needle-based system in parallel mode.
    Lian Z; Chan Y; Luo Y; Yang X; Koh KS; Wang J; Chen GZ; Ren Y; He J
    Electrophoresis; 2020 Jun; 41(10-11):891-901. PubMed ID: 31998972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synchronized Reagent Delivery in Double Emulsions for Triggering Chemical Reactions and Gene Expression.
    Stucki A; Jusková P; Nuti N; Schmitt S; Dittrich PS
    Small Methods; 2021 Aug; 5(8):e2100331. PubMed ID: 34927870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermo-Induced Coalescence of Dual Cores in Double Emulsions for Single-Cell RT-PCR.
    Qu F; Zhao L; Li L; Zhao S; Yang M; Yu J; Ho YP
    Anal Chem; 2022 Aug; 94(33):11670-11678. PubMed ID: 35968810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High throughput production of single core double emulsions in a parallelized microfluidic device.
    Romanowsky MB; Abate AR; Rotem A; Holtze C; Weitz DA
    Lab Chip; 2012 Feb; 12(4):802-7. PubMed ID: 22222423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Osmosis-Mediated Microfluidic Production of Submillimeter-Sized Capsules with an Ultrathin Shell for Cosmetic Applications.
    Hamonangan WM; Lee S; Choi YH; Li W; Tai M; Kim SH
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18159-18169. PubMed ID: 35426298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.
    Basu AS
    Lab Chip; 2013 May; 13(10):1892-901. PubMed ID: 23567746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery.
    Brower KK; Carswell-Crumpton C; Klemm S; Cruz B; Kim G; Calhoun SGK; Nichols L; Fordyce PM
    Lab Chip; 2020 Jun; 20(12):2062-2074. PubMed ID: 32417874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Faster multiple emulsification with drop splitting.
    Abate AR; Weitz DA
    Lab Chip; 2011 Jun; 11(11):1911-5. PubMed ID: 21505660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Micro magnetofluidics: droplet manipulation of double emulsions based on paramagnetic ionic liquids.
    Misuk V; Mai A; Giannopoulos K; Alobaid F; Epple B; Loewe H
    Lab Chip; 2013 Dec; 13(23):4542-8. PubMed ID: 24108233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.