BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35503206)

  • 1. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target.
    Peng S; Woodruff J; Pathak PK; Matts RL; Deng J
    Acta Crystallogr D Struct Biol; 2022 May; 78(Pt 5):571-585. PubMed ID: 35503206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.
    Allan RK; Mok D; Ward BK; Ratajczak T
    J Biol Chem; 2006 Mar; 281(11):7161-71. PubMed ID: 16421106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticancer Inhibitors of Hsp90 Function: Beyond the Usual Suspects.
    Garg G; Khandelwal A; Blagg BS
    Adv Cancer Res; 2016; 129():51-88. PubMed ID: 26916001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation.
    Goode KM; Petrov DP; Vickman RE; Crist SA; Pascuzzi PE; Ratliff TL; Davisson VJ; Hazbun TR
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):1992-2006. PubMed ID: 28495207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of the key residue W320 responsible for Hsp90 conformational change.
    Peng S; Matts RL; Deng J
    J Biomol Struct Dyn; 2023 Nov; 41(19):9745-9755. PubMed ID: 36373326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.
    Prince TL; Kijima T; Tatokoro M; Lee S; Tsutsumi S; Yim K; Rivas C; Alarcon S; Schwartz H; Khamit-Kush K; Scroggins BT; Beebe K; Trepel JB; Neckers L
    PLoS One; 2015; 10(10):e0141786. PubMed ID: 26517842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal modulators of heat shock protein of 90 kDa (HSP90): State of development and modes of action.
    Bickel D; Gohlke H
    Bioorg Med Chem; 2019 Nov; 27(21):115080. PubMed ID: 31519378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32.
    Chatterjee BK; Jayaraj A; Kumar V; Blagg B; Davis RE; Jayaram B; Deep S; Chaudhuri TK
    J Biol Chem; 2019 Apr; 294(16):6450-6467. PubMed ID: 30792306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: a plausible therapeutic approach in Alzheimer's disease.
    Khalid S; Paul S
    Med Hypotheses; 2014 Jul; 83(1):39-46. PubMed ID: 24785461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone.
    Yamada S; Ono T; Mizuno A; Nemoto TK
    Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.
    Marcu MG; Chadli A; Bouhouche I; Catelli M; Neckers LM
    J Biol Chem; 2000 Nov; 275(47):37181-6. PubMed ID: 10945979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site.
    Soti C; Vermes A; Haystead TA; Csermely P
    Eur J Biochem; 2003 Jun; 270(11):2421-8. PubMed ID: 12755697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.
    Blacklock K; Verkhivker GM
    PLoS Comput Biol; 2014 Jun; 10(6):e1003679. PubMed ID: 24922508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands.
    Sattin S; Tao J; Vettoretti G; Moroni E; Pennati M; Lopergolo A; Morelli L; Bugatti A; Zuehlke A; Moses M; Prince T; Kijima T; Beebe K; Rusnati M; Neckers L; Zaffaroni N; Agard DA; Bernardi A; Colombo G
    Chemistry; 2015 Sep; 21(39):13598-608. PubMed ID: 26286886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of the weak ATPase activity of human hsp90 by a client protein.
    McLaughlin SH; Smith HW; Jackson SE
    J Mol Biol; 2002 Jan; 315(4):787-98. PubMed ID: 11812147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins.
    Marcu MG; Schulte TW; Neckers L
    J Natl Cancer Inst; 2000 Feb; 92(3):242-8. PubMed ID: 10655441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex.
    Ali MM; Roe SM; Vaughan CK; Meyer P; Panaretou B; Piper PW; Prodromou C; Pearl LH
    Nature; 2006 Apr; 440(7087):1013-7. PubMed ID: 16625188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain.
    Garnier C; Lafitte D; Tsvetkov PO; Barbier P; Leclerc-Devin J; Millot JM; Briand C; Makarov AA; Catelli MG; Peyrot V
    J Biol Chem; 2002 Apr; 277(14):12208-14. PubMed ID: 11805114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of pyrimidinyl acyl thioureas as novel Hsp90 inhibitors in invasive ductal breast cancer and its bone metastasis.
    Koca İ; Özgür A; Er M; Gümüş M; Açikalin Coşkun K; Tutar Y
    Eur J Med Chem; 2016 Oct; 122():280-290. PubMed ID: 27376491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.