These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 35503206)
1. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Peng S; Woodruff J; Pathak PK; Matts RL; Deng J Acta Crystallogr D Struct Biol; 2022 May; 78(Pt 5):571-585. PubMed ID: 35503206 [TBL] [Abstract][Full Text] [Related]
2. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Donnelly A; Blagg BS Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631 [TBL] [Abstract][Full Text] [Related]
3. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. Allan RK; Mok D; Ward BK; Ratajczak T J Biol Chem; 2006 Mar; 281(11):7161-71. PubMed ID: 16421106 [TBL] [Abstract][Full Text] [Related]
4. Anticancer Inhibitors of Hsp90 Function: Beyond the Usual Suspects. Garg G; Khandelwal A; Blagg BS Adv Cancer Res; 2016; 129():51-88. PubMed ID: 26916001 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of the key residue W320 responsible for Hsp90 conformational change. Peng S; Matts RL; Deng J J Biomol Struct Dyn; 2023 Nov; 41(19):9745-9755. PubMed ID: 36373326 [TBL] [Abstract][Full Text] [Related]
7. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. Obermann WM; Sondermann H; Russo AA; Pavletich NP; Hartl FU J Cell Biol; 1998 Nov; 143(4):901-10. PubMed ID: 9817749 [TBL] [Abstract][Full Text] [Related]
8. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. Prince TL; Kijima T; Tatokoro M; Lee S; Tsutsumi S; Yim K; Rivas C; Alarcon S; Schwartz H; Khamit-Kush K; Scroggins BT; Beebe K; Trepel JB; Neckers L PLoS One; 2015; 10(10):e0141786. PubMed ID: 26517842 [TBL] [Abstract][Full Text] [Related]
9. C-terminal modulators of heat shock protein of 90 kDa (HSP90): State of development and modes of action. Bickel D; Gohlke H Bioorg Med Chem; 2019 Nov; 27(21):115080. PubMed ID: 31519378 [TBL] [Abstract][Full Text] [Related]
10. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32. Chatterjee BK; Jayaraj A; Kumar V; Blagg B; Davis RE; Jayaram B; Deep S; Chaudhuri TK J Biol Chem; 2019 Apr; 294(16):6450-6467. PubMed ID: 30792306 [TBL] [Abstract][Full Text] [Related]
11. Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: a plausible therapeutic approach in Alzheimer's disease. Khalid S; Paul S Med Hypotheses; 2014 Jul; 83(1):39-46. PubMed ID: 24785461 [TBL] [Abstract][Full Text] [Related]
12. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. Marcu MG; Chadli A; Bouhouche I; Catelli M; Neckers LM J Biol Chem; 2000 Nov; 275(47):37181-6. PubMed ID: 10945979 [TBL] [Abstract][Full Text] [Related]
13. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone. Yamada S; Ono T; Mizuno A; Nemoto TK Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site. Soti C; Vermes A; Haystead TA; Csermely P Eur J Biochem; 2003 Jun; 270(11):2421-8. PubMed ID: 12755697 [TBL] [Abstract][Full Text] [Related]
15. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications. Blacklock K; Verkhivker GM PLoS Comput Biol; 2014 Jun; 10(6):e1003679. PubMed ID: 24922508 [TBL] [Abstract][Full Text] [Related]
16. Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands. Sattin S; Tao J; Vettoretti G; Moroni E; Pennati M; Lopergolo A; Morelli L; Bugatti A; Zuehlke A; Moses M; Prince T; Kijima T; Beebe K; Rusnati M; Neckers L; Zaffaroni N; Agard DA; Bernardi A; Colombo G Chemistry; 2015 Sep; 21(39):13598-608. PubMed ID: 26286886 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of the weak ATPase activity of human hsp90 by a client protein. McLaughlin SH; Smith HW; Jackson SE J Mol Biol; 2002 Jan; 315(4):787-98. PubMed ID: 11812147 [TBL] [Abstract][Full Text] [Related]
18. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. Marcu MG; Schulte TW; Neckers L J Natl Cancer Inst; 2000 Feb; 92(3):242-8. PubMed ID: 10655441 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Ali MM; Roe SM; Vaughan CK; Meyer P; Panaretou B; Piper PW; Prodromou C; Pearl LH Nature; 2006 Apr; 440(7087):1013-7. PubMed ID: 16625188 [TBL] [Abstract][Full Text] [Related]
20. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. Garnier C; Lafitte D; Tsvetkov PO; Barbier P; Leclerc-Devin J; Millot JM; Briand C; Makarov AA; Catelli MG; Peyrot V J Biol Chem; 2002 Apr; 277(14):12208-14. PubMed ID: 11805114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]