BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35503206)

  • 21. Alternate strategies of Hsp90 modulation for the treatment of cancer and other diseases.
    Brandt GE; Blagg BS
    Curr Top Med Chem; 2009; 9(15):1447-61. PubMed ID: 19860731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Class of Hsp90 C-Terminal Modulators Have Pre-Clinical Efficacy in Prostate Tumor Cells Without Induction of a Heat Shock Response.
    Armstrong HK; Koay YC; Irani S; Das R; Nassar ZD; ; Selth LA; Centenera MM; McAlpine SR; Butler LM
    Prostate; 2016 Dec; 76(16):1546-1559. PubMed ID: 27526951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Penicisulfuranol A, a novel C-terminal inhibitor disrupting molecular chaperone function of Hsp90 independent of ATP binding domain.
    Dai J; Chen A; Zhu M; Qi X; Tang W; Liu M; Li D; Gu Q; Li J
    Biochem Pharmacol; 2019 May; 163():404-415. PubMed ID: 30857829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Basis for Design of New Purine-Based Inhibitors Targeting the Hydrophobic Binding Pocket of Hsp90.
    Shin SC; El-Damasy AK; Lee JH; Seo SH; Kim JH; Seo YH; Lee Y; Yu JH; Bang EK; Kim EE; Keum G
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33317068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.
    Czemeres J; Buse K; Verkhivker GM
    PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NECA derivatives exploit the paralog-specific properties of the site 3 side pocket of Grp94, the endoplasmic reticulum Hsp90.
    Huck JD; Que NLS; Immormino RM; Shrestha L; Taldone T; Chiosis G; Gewirth DT
    J Biol Chem; 2019 Nov; 294(44):16010-16019. PubMed ID: 31501246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis.
    Verkhivker GM
    Biochim Biophys Acta Proteins Proteom; 2018 Aug; 1866(8):899-912. PubMed ID: 29684503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutations in the Hsp90 N Domain Identify a Site that Controls Dimer Opening and Expand Human Hsp90α Function in Yeast.
    Reidy M; Masison DC
    J Mol Biol; 2020 Jul; 432(16):4673-4689. PubMed ID: 32565117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimentally guided structural modeling and dynamics analysis of Hsp90-p53 interactions: allosteric regulation of the Hsp90 chaperone by a client protein.
    Blacklock K; Verkhivker GM
    J Chem Inf Model; 2013 Nov; 53(11):2962-78. PubMed ID: 24191708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins.
    Ardi VC; Alexander LD; Johnson VA; McAlpine SR
    ACS Chem Biol; 2011 Dec; 6(12):1357-66. PubMed ID: 21950602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.
    Panaretou B; Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1998 Aug; 17(16):4829-36. PubMed ID: 9707442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design.
    Ferraro M; D'Annessa I; Moroni E; Morra G; Paladino A; Rinaldi S; Compostella F; Colombo G
    J Med Chem; 2019 Jan; 62(1):60-87. PubMed ID: 30048133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hsp90: Friends, clients and natural foes.
    Verma S; Goyal S; Jamal S; Singh A; Grover A
    Biochimie; 2016 Aug; 127():227-40. PubMed ID: 27295069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket.
    Söti C; Rácz A; Csermely P
    J Biol Chem; 2002 Mar; 277(9):7066-75. PubMed ID: 11751878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence.
    Scheibel T; Weikl T; Buchner J
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1495-9. PubMed ID: 9465043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thr90 phosphorylation of Hsp90α by protein kinase A regulates its chaperone machinery.
    Wang X; Lu XA; Song X; Zhuo W; Jia L; Jiang Y; Luo Y
    Biochem J; 2012 Jan; 441(1):387-97. PubMed ID: 21919888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle.
    Richter K; Reinstein J; Buchner J
    J Biol Chem; 2002 Nov; 277(47):44905-10. PubMed ID: 12235160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells.
    Liu W; Vielhauer GA; Holzbeierlein JM; Zhao H; Ghosh S; Brown D; Lee E; Blagg BS
    Mol Pharmacol; 2015 Jul; 88(1):121-30. PubMed ID: 25939977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of celastrol, a triterpene with antitumorigenic activity, on conformational and functional aspects of the human 90kDa heat shock protein Hsp90α, a chaperone implicated in the stabilization of the tumor phenotype.
    Zanphorlin LM; Alves FR; Ramos CH
    Biochim Biophys Acta; 2014 Oct; 1840(10):3145-52. PubMed ID: 24954307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordinated ATP hydrolysis by the Hsp90 dimer.
    Richter K; Muschler P; Hainzl O; Buchner J
    J Biol Chem; 2001 Sep; 276(36):33689-96. PubMed ID: 11441008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.