These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 35503206)

  • 41. Stimulation of the ATPase activity of Hsp90 by zerumbone modification of its cysteine residues destabilizes its clients and causes cytotoxicity.
    Nakamoto H; Amaya Y; Komatsu T; Suzuki T; Dohmae N; Nakamura Y; Jantan I; Miyata Y
    Biochem J; 2018 Aug; 475(15):2559-2576. PubMed ID: 30045873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix.
    Gavenonis J; Jonas NE; Kritzer JA
    Bioorg Med Chem; 2014 Aug; 22(15):3989-93. PubMed ID: 24984936
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23.
    Karagöz GE; Duarte AM; Ippel H; Uetrecht C; Sinnige T; van Rosmalen M; Hausmann J; Heck AJ; Boelens R; Rüdiger SG
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):580-5. PubMed ID: 21183720
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure and mechanism of the Hsp90 molecular chaperone machinery.
    Pearl LH; Prodromou C
    Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.
    Blacklock K; Verkhivker GM
    PLoS One; 2014; 9(1):e86547. PubMed ID: 24466147
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeting the entry region of Hsp90's ATP binding pocket with a novel 6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl amide.
    Jeong JH; Oh YJ; Lho Y; Park SY; Liu KH; Ha E; Seo YH
    Eur J Med Chem; 2016 Nov; 124():1069-1080. PubMed ID: 27783977
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and evaluation of coumermycin A1 analogues that inhibit the Hsp90 protein folding machinery.
    Burlison JA; Blagg BS
    Org Lett; 2006 Oct; 8(21):4855-8. PubMed ID: 17020320
    [TBL] [Abstract][Full Text] [Related]  

  • 49. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate.
    Sung N; Lee J; Kim JH; Chang C; Joachimiak A; Lee S; Tsai FT
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2952-7. PubMed ID: 26929380
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibiting protein-protein interactions of Hsp90 as a novel approach for targeting cancer.
    Dutta Gupta S; Bommaka MK; Banerjee A
    Eur J Med Chem; 2019 Sep; 178():48-63. PubMed ID: 31176095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities.
    Dernovšek J; Tomašič T
    Pharmacol Ther; 2023 May; 245():108396. PubMed ID: 37001734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Allosteric Regulation Points Control the Conformational Dynamics of the Molecular Chaperone Hsp90.
    Rehn A; Moroni E; Zierer BK; Tippel F; Morra G; John C; Richter K; Colombo G; Buchner J
    J Mol Biol; 2016 Nov; 428(22):4559-4571. PubMed ID: 27663270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions.
    Li L; Wang L; You QD; Xu XL
    J Med Chem; 2020 Mar; 63(5):1798-1822. PubMed ID: 31663736
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assays for identification of Hsp90 inhibitors and biochemical methods for discriminating their mechanism of action.
    Matts RL; Manjarrez JR
    Curr Top Med Chem; 2009; 9(15):1462-78. PubMed ID: 19860729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37).
    Roe SM; Ali MM; Meyer P; Vaughan CK; Panaretou B; Piper PW; Prodromou C; Pearl LH
    Cell; 2004 Jan; 116(1):87-98. PubMed ID: 14718169
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting the hydrophobic region of Hsp90's ATP binding pocket with novel 1,3,5-triazines.
    Lee T; Seo YH
    Bioorg Med Chem Lett; 2013 Dec; 23(23):6427-31. PubMed ID: 24125885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ligand Binding, Unbinding, and Allosteric Effects: Deciphering Small-Molecule Modulation of HSP90.
    D'Annessa I; Raniolo S; Limongelli V; Di Marino D; Colombo G
    J Chem Theory Comput; 2019 Nov; 15(11):6368-6381. PubMed ID: 31538783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90.
    Li J; Sun L; Xu C; Yu F; Zhou H; Zhao Y; Zhang J; Cai J; Mao C; Tang L; Xu Y; He J
    Acta Biochim Biophys Sin (Shanghai); 2012 Apr; 44(4):300-6. PubMed ID: 22318716
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural Characterization of Human Heat Shock Protein 90 N-Terminal Domain and Its Variants K112R and K112A in Complex with a Potent 1,2,3-Triazole-Based Inhibitor.
    Tassone G; Mazzorana M; Mangani S; Petricci E; Cini E; Giannini G; Pozzi C; Maramai S
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.