These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 35503383)

  • 21. Cell Cycle Withdrawal Limit the Regenerative Potential of Neonatal Cardiomyocytes.
    Yan H; Rao X; Wang R; Zhu S; Liu R; Zheng X
    Cardiovasc Eng Technol; 2021 Oct; 12(5):475-484. PubMed ID: 34046845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Postnatal Cardiac Development and Regenerative Potential in Large Mammals.
    Velayutham N; Agnew EJ; Yutzey KE
    Pediatr Cardiol; 2019 Oct; 40(7):1345-1358. PubMed ID: 31346664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GATA4 regulates Fgf16 to promote heart repair after injury.
    Yu W; Huang X; Tian X; Zhang H; He L; Wang Y; Nie Y; Hu S; Lin Z; Zhou B; Pu W; Lui KO; Zhou B
    Development; 2016 Mar; 143(6):936-49. PubMed ID: 26893347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiomyocyte maturation and its reversal during cardiac regeneration.
    Beisaw A; Wu CC
    Dev Dyn; 2024 Jan; 253(1):8-27. PubMed ID: 36502296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair.
    Ponnusamy M; Liu F; Zhang YH; Li RB; Zhai M; Liu F; Zhou LY; Liu CY; Yan KW; Dong YH; Wang M; Qian LL; Shan C; Xu S; Wang Q; Zhang YH; Li PF; Zhang J; Wang K
    Circulation; 2019 Jun; 139(23):2668-2684. PubMed ID: 30832495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidant stress-sensitive circRNA Mdc1 controls cardiomyocyte chromosome stability and cell cycle re-entry during heart regeneration.
    Ma W; Wang X; Sun H; Xu B; Song R; Tian Y; Zhao L; Xu Y; Zhao Y; Yang F; Chen H; Gong R; Yu Y; Li X; Li S; Zhang W; Zhang T; Ne J; Cai B
    Pharmacol Res; 2022 Oct; 184():106422. PubMed ID: 36058431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myocardial Infarction Techniques in Adult Mice.
    Bassat E; Perez DE; Tzahor E
    Methods Mol Biol; 2021; 2158():3-21. PubMed ID: 32857361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient regenerative potential of the neonatal mouse heart.
    Porrello ER; Mahmoud AI; Simpson E; Hill JA; Richardson JA; Olson EN; Sadek HA
    Science; 2011 Feb; 331(6020):1078-80. PubMed ID: 21350179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turning back the clock: A concise viewpoint of cardiomyocyte cell cycle activation for myocardial regeneration and repair.
    Zhu W; Sun J; Bishop SP; Sadek H; Zhang J
    J Mol Cell Cardiol; 2022 Sep; 170():15-21. PubMed ID: 35660800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Promoting cardiomyocyte proliferation for myocardial regeneration in large mammals.
    Nguyen T; Rosa-Garrido M; Sadek H; Garry DJ; Zhang JJ
    J Mol Cell Cardiol; 2024 Mar; 188():52-60. PubMed ID: 38340541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling.
    Wang Z; Cui M; Shah AM; Ye W; Tan W; Min YL; Botten GA; Shelton JM; Liu N; Bassel-Duby R; Olson EN
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18455-18465. PubMed ID: 31451669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting immunoregulation for cardiac regeneration.
    Li R; Xiang C; Li Y; Nie Y
    J Mol Cell Cardiol; 2023 Apr; 177():1-8. PubMed ID: 36801268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microenvironment stiffness requires decellularized cardiac extracellular matrix to promote heart regeneration in the neonatal mouse heart.
    Wang X; Senapati S; Akinbote A; Gnanasambandam B; Park PS; Senyo SE
    Acta Biomater; 2020 Sep; 113():380-392. PubMed ID: 32590172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Turning back the cardiac regenerative clock: lessons from the neonate.
    Mahmoud AI; Porrello ER
    Trends Cardiovasc Med; 2012 Jul; 22(5):128-33. PubMed ID: 22902092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A neonatal blueprint for cardiac regeneration.
    Porrello ER; Olson EN
    Stem Cell Res; 2014 Nov; 13(3 Pt B):556-70. PubMed ID: 25108892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CUGBP1, a crucial factor for heart regeneration in mice.
    Liu Y; Wang H; Zhang H; Wang J; Liu Q; Bi Y; Song S; Qiao X; Zhu K; Wu Y; Ji G
    Cell Death Dis; 2022 Feb; 13(2):120. PubMed ID: 35136022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular mechanisms of heart regeneration.
    Vujic A; Natarajan N; Lee RT
    Semin Cell Dev Biol; 2020 Apr; 100():20-28. PubMed ID: 31587963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Transcriptional Responses to Injury of Regenerative and Non-regenerative Cardiomyocytes Revealed by Single-Nucleus RNA Sequencing.
    Cui M; Wang Z; Chen K; Shah AM; Tan W; Duan L; Sanchez-Ortiz E; Li H; Xu L; Liu N; Bassel-Duby R; Olson EN
    Dev Cell; 2020 Apr; 53(1):102-116.e8. PubMed ID: 32220304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA-Binding Proteins as Critical Post-Transcriptional Regulators of Cardiac Regeneration.
    Shi DL
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy.
    Mehdipour M; Park S; Huang GN
    J Mol Cell Cardiol; 2023 Apr; 177():9-20. PubMed ID: 36801396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.