These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Battle of the bots: a comparison of the standard da Vinci and the da Vinci Surgical Skills Simulator in surgical skills acquisition. Brown K; Mosley N; Tierney J J Robot Surg; 2017 Jun; 11(2):159-162. PubMed ID: 27573786 [TBL] [Abstract][Full Text] [Related]
9. Deep reinforcement learning in continuous action space for autonomous robotic surgery. Shahkoo AA; Abin AA Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):423-431. PubMed ID: 36383302 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Training Efficacy Between Custom-Made Skills Simulator (CMSS) and da Vinci Skills Simulators: A Randomized Control Study. Lee CR; Rho SY; Han SH; Moon Y; Hwang SY; Kim YJ; Kang CM World J Surg; 2019 Nov; 43(11):2699-2709. PubMed ID: 31399794 [TBL] [Abstract][Full Text] [Related]
11. Current state of virtual reality simulation in robotic surgery training: a review. Bric JD; Lumbard DC; Frelich MJ; Gould JC Surg Endosc; 2016 Jun; 30(6):2169-78. PubMed ID: 26304107 [TBL] [Abstract][Full Text] [Related]
12. Reinforcement learning algorithms for robotic navigation in dynamic environments. Yen GG; Hickey TW ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582 [TBL] [Abstract][Full Text] [Related]
13. Objective assessment in residency-based training for transoral robotic surgery. Curry M; Malpani A; Li R; Tantillo T; Jog A; Blanco R; Ha PK; Califano J; Kumar R; Richmon J Laryngoscope; 2012 Oct; 122(10):2184-92. PubMed ID: 22915265 [TBL] [Abstract][Full Text] [Related]
14. Bi-DexHands: Towards Human-Level Bimanual Dexterous Manipulation. Chen Y; Geng Y; Zhong F; Ji J; Jiang J; Lu Z; Dong H; Yang Y IEEE Trans Pattern Anal Mach Intell; 2024 May; 46(5):2804-2818. PubMed ID: 38051620 [TBL] [Abstract][Full Text] [Related]
15. Organ curvature sensing using pneumatically attachable flexible rails in robotic-assisted laparoscopic surgery. McDonald-Bowyer A; Dietsch S; Dimitrakakis E; Coote JM; Lindenroth L; Stoyanov D; Stilli A Front Robot AI; 2022; 9():1099275. PubMed ID: 36686214 [TBL] [Abstract][Full Text] [Related]
16. Training program for fundamental surgical skill in robotic laparoscopic surgery. Suh I; Mukherjee M; Oleynikov D; Siu KC Int J Med Robot; 2011 Sep; 7(3):327-33. PubMed ID: 21688381 [TBL] [Abstract][Full Text] [Related]
17. Human-robot skills transfer interfaces for a flexible surgical robot. Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285 [TBL] [Abstract][Full Text] [Related]
18. Task-Oriented Deep Reinforcement Learning for Robotic Skill Acquisition and Control. Xiang G; Su J IEEE Trans Cybern; 2021 Feb; 51(2):1056-1069. PubMed ID: 31725408 [TBL] [Abstract][Full Text] [Related]
19. Developing an intelligent tutoring system for robotic-assisted surgery instruction. Julian D; Smith R Int J Med Robot; 2019 Dec; 15(6):e2037. PubMed ID: 31509636 [TBL] [Abstract][Full Text] [Related]
20. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery. Moglia A; Ferrari V; Morelli L; Ferrari M; Mosca F; Cuschieri A Eur Urol; 2016 Jun; 69(6):1065-80. PubMed ID: 26433570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]