These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 35503394)
21. Improving Robotic Skills by Video Review. van der Leun JA; Siem G; Meijer RP; Brinkman WM J Endourol; 2022 Aug; 36(8):1126-1135. PubMed ID: 35262417 [No Abstract] [Full Text] [Related]
22. A comparative analysis and guide to virtual reality robotic surgical simulators. Julian D; Tanaka A; Mattingly P; Truong M; Perez M; Smith R Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29125206 [TBL] [Abstract][Full Text] [Related]
23. Reinforcement Learning Control of Robotic Knee With Human-in-the-Loop by Flexible Policy Iteration. Gao X; Si J; Wen Y; Li M; Huang H IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5873-5887. PubMed ID: 33956634 [TBL] [Abstract][Full Text] [Related]
24. Skills in minimally invasive and open surgery show limited transferability to robotic surgery: results from a prospective study. Kowalewski KF; Schmidt MW; Proctor T; Pohl M; Wennberg E; Karadza E; Romero P; Kenngott HG; Müller-Stich BP; Nickel F Surg Endosc; 2018 Apr; 32(4):1656-1667. PubMed ID: 29435749 [TBL] [Abstract][Full Text] [Related]
25. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools. Dubin AK; Smith R; Julian D; Tanaka A; Mattingly P J Minim Invasive Gynecol; 2017; 24(7):1184-1189. PubMed ID: 28757439 [TBL] [Abstract][Full Text] [Related]
26. GeneWorker: An end-to-end robotic reinforcement learning approach with collaborative generator and worker networks. Wang H; Man H; Cui W; Lu R; Cai C; Fan X Neural Netw; 2024 Oct; 178():106472. PubMed ID: 38936112 [TBL] [Abstract][Full Text] [Related]
27. Robotic-assisted minimally invasive surgery for gynecologic and urologic oncology: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2010; 10(27):1-118. PubMed ID: 23074405 [TBL] [Abstract][Full Text] [Related]
28. Reinforcement learning application in diabetes blood glucose control: A systematic review. Tejedor M; Woldaregay AZ; Godtliebsen F Artif Intell Med; 2020 Apr; 104():101836. PubMed ID: 32499004 [TBL] [Abstract][Full Text] [Related]
29. Automated surgical skill assessment in RMIS training. Zia A; Essa I Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553 [TBL] [Abstract][Full Text] [Related]
30. Ultrasound 3D reconstruction of malignant masses in robotic-assisted partial nephrectomy using the PAF rail system: a comparison study. Wang C; Komninos C; Andersen S; D'Ettorre C; Dwyer G; Maneas E; Edwards P; Desjardins A; Stilli A; Stoyanov D Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1147-1155. PubMed ID: 32385597 [TBL] [Abstract][Full Text] [Related]
31. MetaDrive: Composing Diverse Driving Scenarios for Generalizable Reinforcement Learning. Li Q; Peng Z; Feng L; Zhang Q; Xue Z; Zhou B IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3461-3475. PubMed ID: 35830412 [TBL] [Abstract][Full Text] [Related]
32. Learning Mobile Manipulation through Deep Reinforcement Learning. Wang C; Zhang Q; Tian Q; Li S; Wang X; Lane D; Petillot Y; Wang S Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050678 [TBL] [Abstract][Full Text] [Related]
33. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support. Özen Ö; Buetler KA; Marchal-Crespo L J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897 [TBL] [Abstract][Full Text] [Related]
34. Robotic technology results in faster and more robust surgical skill acquisition than traditional laparoscopy. Moore LJ; Wilson MR; Waine E; Masters RS; McGrath JS; Vine SJ J Robot Surg; 2015 Mar; 9(1):67-73. PubMed ID: 26530974 [TBL] [Abstract][Full Text] [Related]
35. Structured training on the da Vinci Skills Simulator leads to improvement in technical performance of robotic novices. Walliczek-Dworschak U; Mandapathil M; Förtsch A; Teymoortash A; Dworschak P; Werner JA; Güldner C Clin Otolaryngol; 2017 Feb; 42(1):71-80. PubMed ID: 27133186 [TBL] [Abstract][Full Text] [Related]
36. A novel ex vivo trainer for robotic vesicourethral anastomosis. Shee K; Koo K; Wu X; Ghali FM; Halter RJ; Hyams ES J Robot Surg; 2020 Feb; 14(1):21-27. PubMed ID: 30689167 [TBL] [Abstract][Full Text] [Related]
37. Transferability of Virtual Reality, Simulation-Based, Robotic Suturing Skills to a Live Porcine Model in Novice Surgeons: A Single-Blind Randomized Controlled Trial. Vargas MV; Moawad G; Denny K; Happ L; Misa NY; Margulies S; Opoku-Anane J; Abi Khalil E; Marfori C J Minim Invasive Gynecol; 2017; 24(3):420-425. PubMed ID: 28027975 [TBL] [Abstract][Full Text] [Related]
38. Human-Guided Reinforcement Learning With Sim-to-Real Transfer for Autonomous Navigation. Wu J; Zhou Y; Yang H; Huang Z; Lv C IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14745-14759. PubMed ID: 37703148 [TBL] [Abstract][Full Text] [Related]
39. Multimodality Driven Impedance-Based Sim2Real Transfer Learning for Robotic Multiple Peg-in-Hole Assembly. Chen W; Zeng C; Liang H; Sun F; Zhang J IEEE Trans Cybern; 2024 May; 54(5):2784-2797. PubMed ID: 37713227 [TBL] [Abstract][Full Text] [Related]
40. Learning to Predict Consequences as a Method of Knowledge Transfer in Reinforcement Learning. Chalmers E; Contreras EB; Robertson B; Luczak A; Gruber A IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2259-2270. PubMed ID: 28436902 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]