These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35503723)

  • 1. Whokaryote: distinguishing eukaryotic and prokaryotic contigs in metagenomes based on gene structure.
    Pronk LJU; Medema MH
    Microb Genom; 2022 May; 8(5):. PubMed ID: 35503723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MetaEuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics.
    Levy Karin E; Mirdita M; Söding J
    Microbiome; 2020 Apr; 8(1):48. PubMed ID: 32245390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tiara: deep learning-based classification system for eukaryotic sequences.
    Karlicki M; Antonowicz S; Karnkowska A
    Bioinformatics; 2022 Jan; 38(2):344-350. PubMed ID: 34570171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of eukaryotic protein predictions from soil metagenomes.
    Belliardo C; Koutsovoulos GD; Rancurel C; Clément M; Lipuma J; Bailly-Bechet M; Danchin EGJ
    Sci Data; 2022 Jun; 9(1):311. PubMed ID: 35710557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metagenomic discovery of microbial eukaryotes in stool microbiomes.
    Crouch AL; Monsey L; Rambeau M; Ramos C; Yracheta JM; Anderson MZ
    mBio; 2024 Oct; 15(10):e0206324. PubMed ID: 39207108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VEBA: a modular end-to-end suite for in silico recovery, clustering, and analysis of prokaryotic, microeukaryotic, and viral genomes from metagenomes.
    Espinoza JL; Dupont CL
    BMC Bioinformatics; 2022 Oct; 23(1):419. PubMed ID: 36224545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACR: metagenome-assembled prokaryotic and eukaryotic genome refinement tool.
    Seong HJ; Kim JJ; Sul WJ
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37889119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of 197 eukaryotic bins reveals major challenges for eukaryote genome reconstruction from terrestrial metagenomes.
    Saraiva JP; Bartholomäus A; Toscan RB; Baldrian P; Nunes da Rocha U
    Mol Ecol Resour; 2023 Jul; 23(5):1066-1076. PubMed ID: 36847735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved eukaryotic detection compatible with large-scale automated analysis of metagenomes.
    Bazant W; Blevins AS; Crouch K; Beiting DP
    Microbiome; 2023 Apr; 11(1):72. PubMed ID: 37032329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contigs directed gene annotation (ConDiGA) for accurate protein sequence database construction in metaproteomics.
    Wu E; Mallawaarachchi V; Zhao J; Yang Y; Liu H; Wang X; Shen C; Lin Y; Qiao L
    Microbiome; 2024 Mar; 12(1):58. PubMed ID: 38504332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data.
    Ren J; Ahlgren NA; Lu YY; Fuhrman JA; Sun F
    Microbiome; 2017 Jul; 5(1):69. PubMed ID: 28683828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SprayNPray: user-friendly taxonomic profiling of genome and metagenome contigs.
    Garber AI; Armbruster CR; Lee SE; Cooper VS; Bomberger JM; McAllister SM
    BMC Genomics; 2022 Mar; 23(1):202. PubMed ID: 35279076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.
    Dubinkina VB; Ischenko DS; Ulyantsev VI; Tyakht AV; Alexeev DG
    BMC Bioinformatics; 2016 Jan; 17():38. PubMed ID: 26774270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Massive metagenomic data analysis using abundance-based machine learning.
    Harris ZN; Dhungel E; Mosior M; Ahn TH
    Biol Direct; 2019 Aug; 14(1):12. PubMed ID: 31370905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-reconstruction for eukaryotes from complex natural microbial communities.
    West PT; Probst AJ; Grigoriev IV; Thomas BC; Banfield JF
    Genome Res; 2018 Apr; 28(4):569-580. PubMed ID: 29496730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3CAC: improving the classification of phages and plasmids in metagenomic assemblies using assembly graphs.
    Pu L; Shamir R
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii56-ii61. PubMed ID: 36124804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CCMetagen: comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data.
    Marcelino VR; Clausen PTLC; Buchmann JP; Wille M; Iredell JR; Meyer W; Lund O; Sorrell TC; Holmes EC
    Genome Biol; 2020 Apr; 21(1):103. PubMed ID: 32345331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CoMet: a workflow using contig coverage and composition for binning a metagenomic sample with high precision.
    Herath D; Tang SL; Tandon K; Ackland D; Halgamuge SK
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):571. PubMed ID: 29297295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Eukaryotes and Factors Influencing Their Biogeography in Drinking Water Metagenomes.
    Gabrielli M; Dai Z; Delafont V; Timmers PHA; van der Wielen PWJJ; Antonelli M; Pinto AJ
    Environ Sci Technol; 2023 Mar; 57(9):3645-3660. PubMed ID: 36827617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metagenomics methods for the study of plant-associated microbial communities: A review.
    Fadiji AE; Babalola OO
    J Microbiol Methods; 2020 Mar; 170():105860. PubMed ID: 32027927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.