These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35504139)

  • 21. High-frequency, silicon-based ultrasonic nozzles using multiple Fourier horns.
    Tsai SC; Song YL; Tseng TK; Chou YF; Chen WJ; Tsai CS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):277-85. PubMed ID: 15128214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining the Responsivity of Air-Coupled Piezoelectric Transducers Using a Comparative Method: Theory and Experiments.
    Li X; Dai Z; Zhang G; Zhang S; Jeong H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3114-3125. PubMed ID: 34224350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Harmonic analysis of lossy, piezoelectric composite transducers using the plane wave expansion method.
    Orr LA; Mulholland AJ; O'Leary RL; Hayward G
    Ultrasonics; 2008 Dec; 48(8):652-63. PubMed ID: 18433820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Piezoelectric atomization of liquids with dynamic viscosities up to 175 cP at room temperature.
    Xie T; Zeng Y; Gui Z; Ma M; Huo Y; Zhang W; Tan T; Zou T; Zhang F; Zhang J
    Ultrason Sonochem; 2023 Mar; 94():106331. PubMed ID: 36801672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research on Inherent Frequency and Vibration Characteristics of Sandwich Piezoelectric Ceramic Transducer.
    Lu Y; Xu C; Pan Q; Yu Q; Xiao D
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 1-3 connectivity lithium niobate composites for high temperature operation.
    Schmarje N; Kirk KJ; Cochran S
    Ultrasonics; 2007 Dec; 47(1-4):15-22. PubMed ID: 17662330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New technology for the design of advanced ultrasonic transducers for high-power applications.
    Parrini L
    Ultrasonics; 2003 Jun; 41(4):261-9. PubMed ID: 12782257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer.
    Zhang Q; Shi S; Chen W
    Ultrasonics; 2016 Mar; 66():18-26. PubMed ID: 26705603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Fabrication of 15-MHz Ultrasonic Transducers Based on a Textured Pb(Mg
    Sun Y; Jiang L; Chen R; Li R; Kang H; Zeng Y; Yan Y; Priya S; Zhou Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Nov; 69(11):3095-3101. PubMed ID: 35073262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement.
    Maynard JD
    J Acoust Soc Am; 1992 Mar; 91(3):1754-62. PubMed ID: 1564210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrahigh Frequency (100 MHz-300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining.
    Fei C; Chiu CT; Chen X; Chen Z; Ma J; Zhu B; Shung KK; Zhou Q
    Sci Rep; 2016 Jun; 6():28360. PubMed ID: 27329379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized Backing Layers Design for High Frequency Broad Bandwidth Ultrasonic Transducer.
    Hou C; Fei C; Li Z; Zhang S; Man J; Chen D; Wu R; Li D; Yang Y; Feng W
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):475-481. PubMed ID: 34288870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-mode coupled vibration performance analysis of a radial-longitudinal (R-L) ultrasonic transducer.
    Chen C; Dong Y; Wang S; Hu L; Lin S
    J Acoust Soc Am; 2022 Apr; 151(4):2712. PubMed ID: 35461482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of an innovative device for ultrasonic elliptical vibration cutting.
    Zhou M; Hu L
    Ultrasonics; 2015 Jul; 60():76-81. PubMed ID: 25769218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasonic flow meter using mode coupling transducers.
    Joshi SG
    Ultrasonics; 2021 Sep; 116():106497. PubMed ID: 34146866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a miniaturized piezoelectric ultrasonic transducer.
    Li T; Chen Y; Ma J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):649-59. PubMed ID: 19411223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radially composite piezoelectric ceramic tubular transducer in radial vibration.
    Shuyu L; Shuaijun W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2492-8. PubMed ID: 22083782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer.
    Yan Q; Zhang J; Huang J; Wang Y
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29561825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Rapid Prototyping Method for Sub-MHz Single-Element Piezoelectric Transducers by Using 3D-Printed Components.
    Kim J; Menichella B; Lee H; Dayton PA; Pinton GF
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An ultrasonic orthopaedic surgical device based on a cymbal transducer.
    Bejarano F; Feeney A; Wallace R; Simpson H; Lucas M
    Ultrasonics; 2016 Dec; 72():24-33. PubMed ID: 27448457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.