These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35504139)

  • 41. A Low-Voltage Cylindrical Traveling Wave Ultrasonic Motor Incorporating Multilayered Piezoelectric Ceramics.
    Wen Z; Li X; Cao T; Wang B; Liu R; Wu D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jun; 69(6):2129-2136. PubMed ID: 35380959
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural health monitoring using polymer-based capacitive micromachined ultrasonic transducers (CMUTs).
    Hutchins DA; Billson DR; Bradley RJ; Ho KS
    Ultrasonics; 2011 Dec; 51(8):870-7. PubMed ID: 21624626
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.
    Liu Y; Chen W; Liu J; Shi S
    PLoS One; 2010 Apr; 5(4):e10020. PubMed ID: 20368809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of Ultrasonic Machining Characteristics under Dynamic Load.
    Chen Z; Zhao X; Chen S; Chen H; Ni P; Zhang F
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366274
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A single-element transducer with nonuniform thickness for high-frequency broadband applications.
    Liu JH; Chen SY; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):379-86. PubMed ID: 19251525
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical analysis of the hybrid transducer ultrasonic motor: comparison of characteristics calculated by transmission-line and lumped-element models.
    Satonobu J; Friend JR; Nakamura K; Ueha S
    Ultrasonics; 2002 Jun; 39(8):559-65. PubMed ID: 12109546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Backward Data Transfer From Deeply Implanted Device Employing Ultrasonic Load Amplitude-Phase Shift Keying.
    Ozeri S; Amrani O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):199-207. PubMed ID: 34623265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link.
    Shmilovitz D; Ozeri S; Wang CC; Spivak B
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):995-1004. PubMed ID: 24013825
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Radiation impedance and equivalent circuit for piezoelectric ultrasonic composite transducers of vibrational mode-conversion.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):139-49. PubMed ID: 22293744
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Use of Phononic Crystals to Design Piezoelectric Power Transducers.
    Ronda S; Aragón JL; Iglesias E; Montero de Espinosa F
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28362315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Radial vibration of the composite ultrasonic transducer of piezoelectric and metal rings.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1276-80. PubMed ID: 17571826
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel applications of ultrasonic atomization in the manufacturing of fine chemicals, pharmaceuticals, and medical devices.
    Naidu H; Kahraman O; Feng H
    Ultrason Sonochem; 2022 May; 86():105984. PubMed ID: 35395443
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Ultrasonic Laminated Transducer for Viscoelastic Media Detection.
    Yang S; Song W; Chen Y; Yang L; Wang M; Lian Y; Liu K
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770495
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Miniaturized Low-Intensity Ultrasound Device for Wearable Medical Therapeutic Applications.
    Jiang X; Ng WT; Chen J
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1372-1382. PubMed ID: 31613782
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.
    Brown J; Sharma S; Leadbetter J; Cochran S; Adamson R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1911-21. PubMed ID: 25389169
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Piezoelectric Ultrasonic Biological Microdissection Device Based on a Novel Flexure Mechanism for Suppressing Vibration.
    Huang H; Pan Y; Pang Y; Shen H; Gao X; Zhu Y; Chen L; Sun L
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33668595
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast and Precise Control for the Vibration Amplitude of an Ultrasonic Transducer Based on Fuzzy PID Control.
    Du P; Liu Y; Chen W; Zhang S; Deng J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2766-2774. PubMed ID: 33970860
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An Exact and Practical Analyzing Model for Radial Vibration of Piezoelectric Spherical Transducers With Arbitrary Wall Thickness.
    Wang S; Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):760-766. PubMed ID: 32755856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.