These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 35504282)

  • 1. A kinesin-1 variant reveals motor-induced microtubule damage in cells.
    Budaitis BG; Badieyan S; Yue Y; Blasius TL; Reinemann DN; Lang MJ; Cianfrocco MA; Verhey KJ
    Curr Biol; 2022 Jun; 32(11):2416-2429.e6. PubMed ID: 35504282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causes, costs and consequences of kinesin motors communicating through the microtubule lattice.
    Verhey KJ; Ohi R
    J Cell Sci; 2023 Mar; 136(5):. PubMed ID: 36866642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential modification of the C-terminal tails of different α-tubulins and their importance for microtubule function in vivo.
    Bao M; Dörig RE; Vazquez-Pianzola PM; Beuchle D; Suter B
    Elife; 2023 Jun; 12():. PubMed ID: 37345829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centrosome amplification fine tunes tubulin acetylation to differentially control intracellular organization.
    Monteiro P; Yeon B; Wallis SS; Godinho SA
    EMBO J; 2023 Aug; 42(16):e112812. PubMed ID: 37403793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule acetylation promotes kinesin-1 binding and transport.
    Reed NA; Cai D; Blasius TL; Jih GT; Meyhofer E; Gaertig J; Verhey KJ
    Curr Biol; 2006 Nov; 16(21):2166-72. PubMed ID: 17084703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of α-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system.
    Kaul N; Soppina V; Verhey KJ
    Biophys J; 2014 Jun; 106(12):2636-43. PubMed ID: 24940781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A.
    Lessard DV; Zinder OJ; Hotta T; Verhey KJ; Ohi R; Berger CL
    J Biol Chem; 2019 Apr; 294(16):6353-6363. PubMed ID: 30770469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule damage shapes the acetylation gradient.
    Andreu-Carbó M; Egoldt C; Velluz MC; Aumeier C
    Nat Commun; 2024 Mar; 15(1):2029. PubMed ID: 38448418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape.
    Hunter B; Benoit MPMH; Asenjo AB; Doubleday C; Trofimova D; Frazer C; Shoukat I; Sosa H; Allingham JS
    Nat Commun; 2022 Jul; 13(1):4198. PubMed ID: 35859148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylated Microtubules Are Preferentially Bundled Leading to Enhanced Kinesin-1 Motility.
    Balabanian L; Berger CL; Hendricks AG
    Biophys J; 2017 Oct; 113(7):1551-1560. PubMed ID: 28978447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro.
    Walter WJ; Beránek V; Fischermeier E; Diez S
    PLoS One; 2012; 7(8):e42218. PubMed ID: 22870307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The adaptor proteins HAP1a and GRIP1 collaborate to activate the kinesin-1 isoform KIF5C.
    Twelvetrees AE; Lesept F; Holzbaur ELF; Kittler JT
    J Cell Sci; 2019 Dec; 132(24):. PubMed ID: 31757889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner.
    Bell KM; Cha HK; Sindelar CV; Cochran JC
    J Biol Chem; 2017 Sep; 292(35):14680-14694. PubMed ID: 28701465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between microtubule-associated proteins directs motor transport.
    Monroy BY; Sawyer DL; Ackermann BE; Borden MM; Tan TC; Ori-McKenney KM
    Nat Commun; 2018 Apr; 9(1):1487. PubMed ID: 29662074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons.
    Hammond JW; Huang CF; Kaech S; Jacobson C; Banker G; Verhey KJ
    Mol Biol Cell; 2010 Feb; 21(4):572-83. PubMed ID: 20032309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the molecular mechanism of the multitasking kinesin-8 motor.
    Peters C; Brejc K; Belmont L; Bodey AJ; Lee Y; Yu M; Guo J; Sakowicz R; Hartman J; Moores CA
    EMBO J; 2010 Oct; 29(20):3437-47. PubMed ID: 20818331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule-associated septin complexes modulate kinesin and dynein motility with differential specificities.
    Suber Y; Alam MNA; Nakos K; Bhakt P; Spiliotis ET
    J Biol Chem; 2023 Sep; 299(9):105084. PubMed ID: 37495111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tubulin CFEOM mutations both inhibit or activate kinesin motor activity.
    Luchniak A; Roy PS; Kumar A; Schneider IC; Gelfand VI; Jernigan RL; Gupta ML
    Mol Biol Cell; 2024 Mar; 35(3):ar32. PubMed ID: 38170592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules.
    Soppina V; Herbstman JF; Skiniotis G; Verhey KJ
    PLoS One; 2012; 7(10):e48204. PubMed ID: 23110214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural model of microtubule dynamics inhibition by kinesin-4 from the crystal structure of KLP-12 -tubulin complex.
    Taguchi S; Nakano J; Imasaki T; Kita T; Saijo-Hamano Y; Sakai N; Shigematsu H; Okuma H; Shimizu T; Nitta E; Kikkawa S; Mizobuchi S; Niwa S; Nitta R
    Elife; 2022 Sep; 11():. PubMed ID: 36065637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.