These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35504299)
1. Association of Changes in Thickness of Limbal Epithelial and Stroma with Corneal Scars Detected by High-Resolution Anterior Segment Optic Coherence Tomography. Guclu H; Sattarpanah S; Gurlu V Klin Monbl Augenheilkd; 2024 Jun; 241(6):744-750. PubMed ID: 35504299 [TBL] [Abstract][Full Text] [Related]
2. Corneal epithelium and limbal region alterations due to glaucoma medications evaluated by anterior segment optic coherence tomography: a case-control study. Güçlü H; Çınar AK; Çınar AC; Akaray İ; Şambel Aykutlu M; Sakallıoğlu AK; Gürlü V Cutan Ocul Toxicol; 2021 Jun; 40(2):85-94. PubMed ID: 33719786 [TBL] [Abstract][Full Text] [Related]
3. Measurement of corneal and limbal epithelial thickness by anterior segment optical coherence tomography and in vivo confocal microscopy. Le Q; Chen Y; Yang Y; Xu J BMC Ophthalmol; 2016 Sep; 16(1):163. PubMed ID: 27645227 [TBL] [Abstract][Full Text] [Related]
4. Effects of topical antiglaucomatous medications on central corneal epithelial thickness by anterior segment optical coherence tomography. Doğan E; Çakır BK; Aksoy NÖ; Celik E; Erkorkmaz Ü Eur J Ophthalmol; 2020 Nov; 30(6):1519-1524. PubMed ID: 31964173 [TBL] [Abstract][Full Text] [Related]
5. Diagnosis of limbal stem cell deficiency based on corneal epithelial thickness measured on anterior segment optical coherence tomography. Mehtani A; Agarwal MC; Sharma S; Chaudhary S Indian J Ophthalmol; 2017 Nov; 65(11):1120-1126. PubMed ID: 29133636 [TBL] [Abstract][Full Text] [Related]
6. Corneal Epithelial Thickness Measured Using Anterior Segment Optical Coherence Tomography as a Diagnostic Parameter for Limbal Stem Cell Deficiency. Liang Q; Le Q; Cordova DW; Tseng CH; Deng SX Am J Ophthalmol; 2020 Aug; 216():132-139. PubMed ID: 32283095 [TBL] [Abstract][Full Text] [Related]
7. Comparative evaluation of corneal and limbal epithelial thickness in brachycephalic dogs with and without corneal diseases using spectral domain optical coherence tomography. Jeong Y; Kang S; Seo K Vet Ophthalmol; 2024 Jan; 27(1):30-39. PubMed ID: 37118910 [TBL] [Abstract][Full Text] [Related]
8. Spectral-domain Optical Coherence Tomography in Limbal Stem Cell Deficiency. A Case-Control Study. Banayan N; Georgeon C; Grieve K; Borderie VM Am J Ophthalmol; 2018 Jun; 190():179-190. PubMed ID: 29621511 [TBL] [Abstract][Full Text] [Related]
9. [In vivo confocal microscopy and optical coherence tomography as innovative tools for the diagnosis of limbal stem cell deficiency (French translation of the article)]. Banayan N; Georgeon C; Grieve K; Ghoubay D; Baudouin F; Borderie V J Fr Ophtalmol; 2018 Dec; 41(10):968-980. PubMed ID: 30473234 [TBL] [Abstract][Full Text] [Related]
10. Assessment of corneal and limbal epithelial thickness by spectral-domain optical coherence tomography in brachycephalic and non-brachycephalic dogs. Jeong Y; Kang S; Ahn J; Kim S; Kim H; Park J; Seo K Vet Ophthalmol; 2023 Apr; 26 Suppl 1():89-97. PubMed ID: 35904513 [TBL] [Abstract][Full Text] [Related]
12. Age-related changes in human corneal epithelial thickness measured with anterior segment optical coherence tomography. Yang Y; Hong J; Deng SX; Xu J Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5032-8. PubMed ID: 25052994 [TBL] [Abstract][Full Text] [Related]
13. Comparison of human central cornea and limbus in vivo using optical coherence tomography. Feng Y; Simpson TL Optom Vis Sci; 2005 May; 82(5):416-9. PubMed ID: 15894917 [TBL] [Abstract][Full Text] [Related]
14. Ocular surface epithelial thickness evaluation with spectral-domain optical coherence tomography. Francoz M; Karamoko I; Baudouin C; Labbé A Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9116-23. PubMed ID: 22025572 [TBL] [Abstract][Full Text] [Related]
15. Corneal sublayer thickness in patients with pseudoexfoliation syndrome evaluated by anterior segment optical coherence tomography. Tekce A; Gulmez M Int Ophthalmol; 2020 Mar; 40(3):563-570. PubMed ID: 31701362 [TBL] [Abstract][Full Text] [Related]
16. Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography. Feng Y; Simpson TL Optom Vis Sci; 2008 Sep; 85(9):E880-3. PubMed ID: 18772715 [TBL] [Abstract][Full Text] [Related]
17. Longitudinal Changes in Corneal Epithelial Thickness and Reflectivity following Simple Limbal Epithelial Transplantation: An Optical Coherence Tomography-Based Study. Kate A; Mudgil T; Basu S Curr Eye Res; 2022 Mar; 47(3):336-342. PubMed ID: 34605742 [TBL] [Abstract][Full Text] [Related]
18. Correlation between the existence of the palisades of Vogt and limbal epithelial thickness in limbal stem cell deficiency. Le Q; Yang Y; Deng SX; Xu J Clin Exp Ophthalmol; 2017 Apr; 45(3):224-231. PubMed ID: 27591548 [TBL] [Abstract][Full Text] [Related]
19. In vivo confocal microscopy indicates an inverse relationship between the sub-basal corneal plexus and the conjunctivalisation in patients with limbal stem cell deficiency. Caro-Magdaleno M; Alfaro-Juárez A; Montero-Iruzubieta J; Fernández-Palacín A; Muñoz-Morales A; Castilla-Martino MA; Spínola-Muñoz C; Rodríguez-de-la-Rúa E Br J Ophthalmol; 2019 Mar; 103(3):327-331. PubMed ID: 29777047 [TBL] [Abstract][Full Text] [Related]
20. Morphometric characterisation of pterygium associated with corneal stromal scarring using high-resolution anterior segment optical coherence tomography. Gasser T; Romano V; Seifarth C; Bechrakis NE; Kaye SB; Steger B Br J Ophthalmol; 2017 May; 101(5):660-664. PubMed ID: 27488179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]