These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 35504393)

  • 61. Life Cycle Assessment of Vehicle Lightweighting: Novel Mathematical Methods to Estimate Use-Phase Fuel Consumption.
    Kim HC; Wallington TJ; Sullivan JL; Keoleian GA
    Environ Sci Technol; 2015 Aug; 49(16):10209-16. PubMed ID: 26168234
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mitigation potential of black carbon emissions from on-road vehicles in China.
    Zhang S; Wu X; Zheng X; Wen Y; Wu Y
    Environ Pollut; 2021 Jun; 278():116746. PubMed ID: 33676196
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Carbon emission potential of new energy vehicles under different electricity structures.
    Liu B; Zhao Y; Liang X
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):125492-125509. PubMed ID: 37999849
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Analysis of Agricultural Biomass Energy Use and Greenhouse Gas Reduction Evidence from China.
    Li D
    J Environ Public Health; 2022; 2022():6126944. PubMed ID: 35859578
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electric vehicles in China: emissions and health impacts.
    Ji S; Cherry CR; J Bechle M; Wu Y; Marshall JD
    Environ Sci Technol; 2012 Feb; 46(4):2018-24. PubMed ID: 22201325
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Greenhouse gas emission inventory of drinking water treatment plants and case studies in China.
    Li F; Zhang X; Huang J; Liu B; Gao X; Shi Y; Li K
    Sci Total Environ; 2024 Feb; 912():169090. PubMed ID: 38056661
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Carbon footprint of hospital laundry: a life-cycle assessment.
    John J; Collins M; O'Flynn K; Briggs T; Gray W; McGrath J
    BMJ Open; 2024 Feb; 14(2):e080838. PubMed ID: 38418230
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.
    Michalek JJ; Chester M; Jaramillo P; Samaras C; Shiau CS; Lave LB
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16554-8. PubMed ID: 21949359
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Life Cycle Greenhouse Gas Emissions for Last-Mile Parcel Delivery by Automated Vehicles and Robots.
    Li L; He X; Keoleian GA; Kim HC; De Kleine R; Wallington TJ; Kemp NJ
    Environ Sci Technol; 2021 Jul; ():. PubMed ID: 34328327
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective.
    Shafique M; Luo X
    J Environ Manage; 2022 Feb; 303():114050. PubMed ID: 34872799
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The inharmonious mechanism of CO
    Wang L; Yu Y; Huang K; Zhang Z; Li X
    J Environ Manage; 2020 Nov; 274():111236. PubMed ID: 32827870
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The evaluation of greenhouse gas emissions from sewage treatment with urbanization: Understanding the opportunities and challenges for climate change mitigation in China's low-carbon pilot city, Shenzhen.
    Xian C; Gong C; Lu F; Wu H; Ouyang Z
    Sci Total Environ; 2023 Jan; 855():158629. PubMed ID: 36087675
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Are electric vehicles really the optimal option for the transportation sector in China to approach pollution reduction and carbon neutrality goals?
    Deng C; Qian Y; Song X; Xie M; Duan H; Shen P; Qiao Q
    J Environ Manage; 2024 Apr; 356():120648. PubMed ID: 38508012
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Techno-Economic Assessment and Life Cycle Assessment of CO
    Abuov Y; Serik G; Lee W
    Environ Sci Technol; 2022 Jun; 56(12):8571-8580. PubMed ID: 35653301
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Environmental and human health impact of different powertrain passenger cars in a life cycle perspective. A focus on health risk and oxidative potential of particulate matter components.
    Sisani F; Di Maria F; Cesari D
    Sci Total Environ; 2022 Jan; 805():150171. PubMed ID: 34537714
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.
    Stettler ME; Midgley WJ; Swanson JJ; Cebon D; Boies AM
    Environ Sci Technol; 2016 Feb; 50(4):2018-26. PubMed ID: 26757000
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year.
    Choi DG; Kreikebaum F; Thomas VM; Divan D
    Environ Sci Technol; 2013 Sep; 47(18):10703-7. PubMed ID: 23875888
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Environmental and energy implications of coal-based alternative vehicle fuel pathway from the life cycle perspective.
    Wu J; Shang J
    Environ Sci Pollut Res Int; 2022 Aug; 29(37):56727-56738. PubMed ID: 35347604
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Assessment of GHG mitigation and CDM technology in urban transport sector of Chandigarh, India.
    Bhargava N; Gurjar BR; Mor S; Ravindra K
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):363-374. PubMed ID: 29039038
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Life-Cycle Comparison of Alternative Automobile Fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-1779. PubMed ID: 28076232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.