BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35504409)

  • 1. Clinical feasibility of an abdominal thin-slice breath-hold single-shot fast spin echo sequence processed using a deep learning-based noise-reduction approach.
    Tajima T; Akai H; Yasaka K; Kunimatsu A; Akahane M; Yoshioka N; Abe O; Ohtomo K; Kiryu S
    Magn Reson Imaging; 2022 Jul; 90():76-83. PubMed ID: 35504409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breath-hold 3D magnetic resonance cholangiopancreatography at 1.5 T using a deep learning-based noise-reduction approach: Comparison with the conventional respiratory-triggered technique.
    Tajima T; Akai H; Sugawara H; Yasaka K; Kunimatsu A; Yoshioka N; Akahane M; Ohtomo K; Abe O; Kiryu S
    Eur J Radiol; 2021 Nov; 144():109994. PubMed ID: 34627106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the inner ear by 3D fast asymmetric spin echo (FASE) MR imaging: phantom and volunteer studies.
    Yang D; Kodama T; Tamura S; Watanabe K
    Magn Reson Imaging; 1999 Feb; 17(2):171-82. PubMed ID: 10215471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utility of breath-hold fast-recovery fast spin-echo t2 versus respiratory-triggered fast spin-echo T2 in clinical hepatic imaging.
    Huang J; Raman SS; Vuong N; Sayre JW; Lu DS
    AJR Am J Roentgenol; 2005 Mar; 184(3):842-6. PubMed ID: 15728606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Deep Learning Reconstruction on Respiratory-triggered T2-weighted MR Imaging of the Liver: A Comparison between the Single-shot Fast Spin-echo and Fast Spin-echo Sequences.
    Kiso K; Tsuboyama T; Onishi H; Ogawa K; Nakamoto A; Tatsumi M; Ota T; Fukui H; Yano K; Honda T; Kakemoto S; Koyama Y; Tarewaki H; Tomiyama N
    Magn Reson Med Sci; 2024 Apr; 23(2):214-224. PubMed ID: 36990740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of fast MR imaging: quantitative analysis on image quality and efficiency among various time frames and contrast behaviors.
    Li T; Mirowitz SA
    Magn Reson Imaging; 2002 Jul; 20(6):471-8. PubMed ID: 12361794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers.
    Kidoh M; Shinoda K; Kitajima M; Isogawa K; Nambu M; Uetani H; Morita K; Nakaura T; Tateishi M; Yamashita Y; Yamashita Y
    Magn Reson Med Sci; 2020 Aug; 19(3):195-206. PubMed ID: 31484849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of accelerated whole-body diffusion-weighted imaging using a deep learning-based noise-reduction technique in patients with prostate cancer.
    Tajima T; Akai H; Sugawara H; Furuta T; Yasaka K; Kunimatsu A; Yoshioka N; Akahane M; Abe O; Ohtomo K; Kiryu S
    Magn Reson Imaging; 2022 Oct; 92():169-179. PubMed ID: 35772583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usefulness of Breath-Hold Fat-Suppressed T2-Weighted Images With Deep Learning-Based Reconstruction of the Liver: Comparison to Conventional Free-Breathing Turbo Spin Echo.
    Ichinohe F; Oyama K; Yamada A; Hayashihara H; Adachi Y; Kitoh Y; Kanki Y; Maruyama K; Nickel MD; Fujinaga Y
    Invest Radiol; 2023 Jun; 58(6):373-379. PubMed ID: 36728880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T2-weighted MRI of rectosigmoid carcinoma: comparison of respiratory-triggered fast spin-echo, breathhold fast-recovery fast spin-echo, and breathhold single-shot fast spin-echo sequences.
    Yamashita S; Masui T; Katayama M; Sato K; Yoshizawa N; Seo H; Sakahara H
    J Magn Reson Imaging; 2007 Mar; 25(3):511-6. PubMed ID: 17326094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utility of Thin-slice Fat-suppressed Single-shot T2-weighted MR Imaging with Deep Learning Image Reconstruction as a Protocol for Evaluating the Pancreas.
    Shimada R; Sofue K; Ueno Y; Wakayama T; Yamaguchi T; Ueshima E; Kusaka A; Hori M; Murakami T
    Magn Reson Med Sci; 2024 Jun; ():. PubMed ID: 38910138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional static-fluid MR urography with gradient- and spin-echo (GRASE) at 3.0T: comparison of image quality and diagnostic performance with respiratory-triggered fast spin-echo (FSE).
    Wang W; Yang J; Liu J; Li W; Zhao K; Xue K; Dai Y; Qiu J
    Abdom Radiol (NY); 2022 May; 47(5):1828-1839. PubMed ID: 35234996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usefulness of deep learning-based noise reduction for 1.5 T MRI brain images.
    Tajima T; Akai H; Yasaka K; Kunimatsu A; Yamashita Y; Akahane M; Yoshioka N; Abe O; Ohtomo K; Kiryu S
    Clin Radiol; 2023 Jan; 78(1):e13-e21. PubMed ID: 36116967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of focal liver lesions: fast-recovery fast spin echo T2-weighted MR imaging.
    Akin O; Schwartz LH; Welber A; Maier CF; Decorato DR; Panicek DM
    Clin Imaging; 2006; 30(5):322-5. PubMed ID: 16919552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of breath-hold multishot echo-planar and respiratory triggered fast-spin-echo sequences for T2-weighted MRI of liver lesions.
    Yamakado K; Sakuma H; Murashima S; Nakatsuka A; Matsumura K; Takeda K
    J Magn Reson Imaging; 1998; 8(2):432-7. PubMed ID: 9562072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How reliable is MRCP with an SS-FSE sequence at 3.0 T: comparison between SS-FSE BH and 3D-FSE BH ASSET sequences.
    Lavdas E; Vlychou M; Arikidis N; Kapsalaki E; Roka V; Arvanitis DL; Fezoulidis I; Vassiou K
    Clin Imaging; 2013; 37(4):697-703. PubMed ID: 23522790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient- and spin-echo T2-weighted imaging for SPIO-enhanced detection and characterization of focal liver lesions.
    Yoshikawa T; Mitchell DG; Hirota S; Ohno Y; Oda K; Maeda T; Fujii M; Sugimura K
    J Magn Reson Imaging; 2006 May; 23(5):712-9. PubMed ID: 16568431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance cholangiopancreatography: comparison of respiratory-triggered three-dimensional fast-recovery fast spin-echo with parallel imaging technique and breath-hold half-Fourier two-dimensional single-shot fast spin-echo technique.
    Masui T; Katayama M; Kobayashi S; Nozaki A; Sugimura M; Ikeda M; Sakahara H
    Radiat Med; 2006 Apr; 24(3):202-9. PubMed ID: 16875308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Tanaka Y; Baba H; Hirai T
    Eur Radiol; 2023 Nov; 33(11):7585-7594. PubMed ID: 37178197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fat-suppressed T2-weighted MRI of the liver: comparison of respiratory-triggered fast spin-echo, breath-hold single-shot fast spin-echo, and breath-hold fast-recovery fast spin-echo sequences.
    Katayama M; Masui T; Kobayashi S; Ito T; Takahashi M; Sakahara H; Nozaki A; Kabasawa H
    J Magn Reson Imaging; 2001 Oct; 14(4):439-49. PubMed ID: 11599069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.