BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 35504464)

  • 1. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach.
    Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F
    Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources.
    Yadav R; Singh G; Santal AR; Singh NP
    J Environ Manage; 2023 Jun; 336():117730. PubMed ID: 36921476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of metal transporters in phytoremediation: A closer look at Arabidopsis.
    Maharajan T; Chellasamy G; Tp AK; Ceasar SA; Yun K
    Chemosphere; 2023 Jan; 310():136881. PubMed ID: 36257391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects.
    Saxena G; Purchase D; Mulla SI; Saratale GD; Bharagava RN
    Rev Environ Contam Toxicol; 2020; 249():71-131. PubMed ID: 30806802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies.
    Rai GK; Bhat BA; Mushtaq M; Tariq L; Rai PK; Basu U; Dar AA; Islam ST; Dar TUH; Bhat JA
    Physiol Plant; 2021 Sep; 173(1):287-304. PubMed ID: 33864701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach.
    Priya AK; Muruganandam M; Ali SS; Kornaros M
    Toxics; 2023 May; 11(5):. PubMed ID: 37235237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential implementation of trees to remediate contaminated soil in Egypt.
    Bedair H; Ghosh S; Abdelsalam IM; Keerio AA; AlKafaas SS
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):78132-78151. PubMed ID: 36175731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of heavy metals using Iris species: A potential approach for reclamation of heavy metal-polluted sites and environmental beautification.
    Naing AH; Park DY; Park HC; Kim CK
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78004-78016. PubMed ID: 37303013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation.
    Yang Z; Yang F; Liu JL; Wu HT; Yang H; Shi Y; Liu J; Zhang YF; Luo YR; Chen KM
    Sci Total Environ; 2022 Feb; 809():151099. PubMed ID: 34688763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline-sodic soil.
    Mousavi Kouhi SM; Moudi M
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):10027-10038. PubMed ID: 31933083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation.
    Gulzar ABM; Mazumder PB
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40319-40341. PubMed ID: 35316490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation.
    Zhu Y; Wang Y; He X; Li B; Du S
    Chemosphere; 2023 Oct; 338():139475. PubMed ID: 37442391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils.
    Ullah S; Liu Q; Wang S; Jan AU; Sharif HMA; Ditta A; Wang G; Cheng H
    Sci Total Environ; 2023 Nov; 899():165726. PubMed ID: 37495153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies.
    Asgari Lajayer B; Khadem Moghadam N; Maghsoodi MR; Ghorbanpour M; Kariman K
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8468-8484. PubMed ID: 30712209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metals in plants and phytoremediation.
    Cheng S
    Environ Sci Pollut Res Int; 2003; 10(5):335-40. PubMed ID: 14535650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India-A Review.
    Barathi S; Lee J; Venkatesan R; Vetcher AA
    Plants (Basel); 2023 Nov; 12(22):. PubMed ID: 38005713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges.
    Shen X; Dai M; Yang J; Sun L; Tan X; Peng C; Ali I; Naz I
    Chemosphere; 2022 Mar; 291(Pt 3):132979. PubMed ID: 34801572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.