BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 35504464)

  • 21. Recent advances in phyto-combined remediation of heavy metal pollution in soil.
    Deng S; Zhang X; Zhu Y; Zhuo R
    Biotechnol Adv; 2024; 72():108337. PubMed ID: 38460740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant growth and heavy meal accumulation characteristics of
    Liu K; Dai C; Li C; Hu J; Wang Z; Li Y; Yu F; Li G
    Int J Phytoremediation; 2023; 25(4):524-537. PubMed ID: 35790485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytoremediation of toxic metals present in soil and water environment: a critical review.
    Kanwar VS; Sharma A; Srivastav AL; Rani L
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):44835-44860. PubMed ID: 32981020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytoremediation of heavy metals--concepts and applications.
    Ali H; Khan E; Sajad MA
    Chemosphere; 2013 May; 91(7):869-81. PubMed ID: 23466085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature.
    Oladoye PO; Olowe OM; Asemoloye MD
    Chemosphere; 2022 Feb; 288(Pt 2):132555. PubMed ID: 34653492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants.
    Salt DE; Blaylock M; Kumar NP; Dushenkov V; Ensley BD; Chet I; Raskin I
    Biotechnology (N Y); 1995 May; 13(5):468-74. PubMed ID: 9634787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies.
    Noor I; Sohail H; Sun J; Nawaz MA; Li G; Hasanuzzaman M; Liu J
    Chemosphere; 2022 Sep; 303(Pt 3):135196. PubMed ID: 35659937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives.
    Thakur S; Singh L; Wahid ZA; Siddiqui MF; Atnaw SM; Din MF
    Environ Monit Assess; 2016 Apr; 188(4):206. PubMed ID: 26940329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on bioremediation approach for heavy metal detoxification and accumulation in plants.
    Yaashikaa PR; Kumar PS; Jeevanantham S; Saravanan R
    Environ Pollut; 2022 May; 301():119035. PubMed ID: 35196562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.
    Sharma S; Singh B; Manchanda VK
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):946-62. PubMed ID: 25277712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions.
    Alves ARA; Yin Q; Oliveira RS; Silva EF; Novo LAB
    Sci Total Environ; 2022 Sep; 838(Pt 4):156435. PubMed ID: 35660615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tolerance capacities of
    Zeng P; Guo Z; Xiao X; Zhou H; Gu J; Liao B
    Int J Phytoremediation; 2022; 24(6):580-589. PubMed ID: 34369831
    [No Abstract]   [Full Text] [Related]  

  • 33. Significance and genetic control of membrane transporters to improve phytoremediation and biofortification processes.
    Ajeesh Krishna TP; Maharajan T; Antony Ceasar S
    Mol Biol Rep; 2023 Jul; 50(7):6147-6157. PubMed ID: 37212961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytoremediation of toxic metals from soil and waste water.
    Hooda V
    J Environ Biol; 2007 Apr; 28(2 Suppl):367-76. PubMed ID: 17929752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass.
    Khan AHA; Kiyani A; Santiago-Herrera M; Ibáñez J; Yousaf S; Iqbal M; Martel-Martín S; Barros R
    J Environ Manage; 2023 Jan; 326(Pt B):116700. PubMed ID: 36423411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytoremediation of radionuclides in soil, sediments and water.
    Yan L; Le QV; Sonne C; Yang Y; Yang H; Gu H; Ma NL; Lam SS; Peng W
    J Hazard Mater; 2021 Apr; 407():124771. PubMed ID: 33388721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment.
    Sharma JK; Kumar N; Singh NP; Santal AR
    Front Plant Sci; 2023; 14():1076876. PubMed ID: 36778693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency.
    Luo ZB; He J; Polle A; Rennenberg H
    Biotechnol Adv; 2016 Nov; 34(6):1131-1148. PubMed ID: 27422434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water.
    Delgado-González CR; Madariaga-Navarrete A; Fernández-Cortés JM; Islas-Pelcastre M; Oza G; Iqbal HMN; Sharma A
    Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34068925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Migration and transformation of heavy metals in hyperaccumulators during the thermal treatment: a review.
    Su W; Li X; Zhang H; Xing Y; Liu P; Cai C
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):47838-47855. PubMed ID: 34302242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.