BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 35504760)

  • 1. 3D cell cultures toward quantitative high-throughput drug screening.
    Wang Y; Jeon H
    Trends Pharmacol Sci; 2022 Jul; 43(7):569-581. PubMed ID: 35504760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for high throughput 3D drug screening of patient derived melanoma and renal cell carcinoma.
    Ortiz Jordan LM; Vega VF; Shumate J; Peles A; Zeiger J; Scampavia L; Spicer TP
    SLAS Discov; 2024 Apr; 29(3):100141. PubMed ID: 38218316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Development of Primary Pancreatic Organoid Tumor Models for High-Throughput Phenotypic Drug Screening.
    Hou S; Tiriac H; Sridharan BP; Scampavia L; Madoux F; Seldin J; Souza GR; Watson D; Tuveson D; Spicer TP
    SLAS Discov; 2018 Jul; 23(6):574-584. PubMed ID: 29673279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-Engineered 3D In Vitro Disease Models for High-Throughput Drug Screening.
    Huskin G; Chen J; Davis T; Jun HW
    Tissue Eng Regen Med; 2023 Jul; 20(4):523-538. PubMed ID: 36892736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 1536-Well 3D Viability Assay to Assess the Cytotoxic Effect of Drugs on Spheroids.
    Madoux F; Tanner A; Vessels M; Willetts L; Hou S; Scampavia L; Spicer TP
    SLAS Discov; 2017 Jun; 22(5):516-524. PubMed ID: 28346088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling high throughput drug discovery in 3D cell cultures through a novel bioprinting workflow.
    Engel M; Belfiore L; Aghaei B; Sutija M
    SLAS Technol; 2022 Feb; 27(1):32-38. PubMed ID: 35058203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation.
    Jeong MH; Kim I; Park K; Ku B; Lee DW; Park KR; Jeon SY; Kim JE
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis.
    Booij TH; Price LS; Danen EHJ
    SLAS Discov; 2019 Jul; 24(6):615-627. PubMed ID: 30817892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Hydrogel Cultures for High-Throughput Drug Discovery.
    Sperle K; Pochan DJ; Langhans SA
    Methods Mol Biol; 2023; 2614():369-381. PubMed ID: 36587136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple, reliable method for high-throughput screening for diabetes drugs using 3D β-cell spheroids.
    Amin J; Ramachandran K; Williams SJ; Lee A; Novikova L; Stehno-Bittel L
    J Pharmacol Toxicol Methods; 2016; 82():83-89. PubMed ID: 27554916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput fluorescence imaging approaches for drug discovery using in vitro and in vivo three-dimensional models.
    Martinez NJ; Titus SA; Wagner AK; Simeonov A
    Expert Opin Drug Discov; 2015 Dec; 10(12):1347-61. PubMed ID: 26394277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Generation of Three-Dimensional Head and Neck Cancer Models for Drug Discovery in 384-Well Ultra-Low Attachment Microplates.
    Close DA; Camarco DP; Shan F; Kochanek SJ; Johnston PA
    Methods Mol Biol; 2018; 1683():355-369. PubMed ID: 29082502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recommended Guidelines for Developing, Qualifying, and Implementing Complex In Vitro Models (CIVMs) for Drug Discovery.
    Ekert JE; Deakyne J; Pribul-Allen P; Terry R; Schofield C; Jeong CG; Storey J; Mohamet L; Francis J; Naidoo A; Amador A; Klein JL; Rowan W
    SLAS Discov; 2020 Dec; 25(10):1174-1190. PubMed ID: 32495689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a High-Throughput Pilot Screen in Peptide Hydrogel-Based Three-Dimensional Cell Cultures.
    Worthington P; Drake KM; Li Z; Napper AD; Pochan DJ; Langhans SA
    SLAS Discov; 2019 Aug; 24(7):714-723. PubMed ID: 31039326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids.
    Costamagna G; Comi GP; Corti S
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated MALDI Target Preparation Concept: Providing Ultra-High-Throughput Mass Spectrometry-Based Screening for Drug Discovery.
    Winter M; Ries R; Kleiner C; Bischoff D; Luippold AH; Bretschneider T; Büttner FH
    SLAS Technol; 2019 Apr; 24(2):209-221. PubMed ID: 30074850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.
    Tung YC; Hsiao AY; Allen SG; Torisawa YS; Ho M; Takayama S
    Analyst; 2011 Feb; 136(3):473-8. PubMed ID: 20967331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures.
    Joshi P; Lee MY
    Biosensors (Basel); 2015 Dec; 5(4):768-90. PubMed ID: 26694477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automating a Magnetic 3D Spheroid Model Technology for High-Throughput Screening.
    Baillargeon P; Shumate J; Hou S; Fernandez-Vega V; Marques N; Souza G; Seldin J; Spicer TP; Scampavia L
    SLAS Technol; 2019 Aug; 24(4):420-428. PubMed ID: 31225974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug Discovery Goes Three-Dimensional: Goodbye to Flat High-Throughput Screening?
    Eglen RM; Randle DH
    Assay Drug Dev Technol; 2015 Jun; 13(5):262-5. PubMed ID: 26121065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.