These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35505401)

  • 1. Efficient 3D conformer generation of cyclic peptides formed by a disulfide bond.
    Tao H; Wu Q; Zhao X; Lin P; Huang SY
    J Cheminform; 2022 May; 14(1):26. PubMed ID: 35505401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient conformational ensemble generation of protein-bound peptides.
    Yan Y; Zhang D; Huang SY
    J Cheminform; 2017 Nov; 9(1):59. PubMed ID: 29168051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Docking cyclic peptides formed by a disulfide bond through a hierarchical strategy.
    Tao H; Zhao X; Zhang K; Lin P; Huang SY
    Bioinformatics; 2022 Sep; 38(17):4109-4116. PubMed ID: 35801933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Flexible Peptide Docking by Conformer Generation and Ensemble Docking of Peptides.
    Zhou P; Li B; Yan Y; Jin B; Wang L; Huang SY
    J Chem Inf Model; 2018 Jun; 58(6):1292-1302. PubMed ID: 29738247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclization and Docking Protocol for Cyclic Peptide-Protein Modeling Using HADDOCK2.4.
    Charitou V; van Keulen SC; Bonvin AMJJ
    J Chem Theory Comput; 2022 Jun; 18(6):4027-4040. PubMed ID: 35652781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Conformer Generation for Small Rings and Macrocycles Based on Distance Geometry and Experimental Torsional-Angle Preferences.
    Wang S; Witek J; Landrum GA; Riniker S
    J Chem Inf Model; 2020 Apr; 60(4):2044-2058. PubMed ID: 32155061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides.
    Thévenet P; Shen Y; Maupetit J; Guyon F; Derreumaux P; Tufféry P
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W288-93. PubMed ID: 22581768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PubChem3D: Conformer generation.
    Bolton EE; Kim S; Bryant SH
    J Cheminform; 2011 Jan; 3(1):4. PubMed ID: 21272340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PepVis: An integrated peptide virtual screening pipeline for ensemble and flexible docking protocols.
    Ansar S; Vetrivel U
    Chem Biol Drug Des; 2019 Dec; 94(6):2041-2050. PubMed ID: 31441995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of disulfide bond influence on properties of an RGD peptide.
    Wang Y; Goh SY; Kuczera K
    J Pept Res; 1999 Feb; 53(2):188-200. PubMed ID: 10195456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating NOE-Derived Distances in Conformer Generation of Cyclic Peptides with Distance Geometry.
    Wang S; Krummenacher K; Landrum GA; Sellers BD; Di Lello P; Robinson SJ; Martin B; Holden JK; Tom JYK; Murthy AC; Popovych N; Riniker S
    J Chem Inf Model; 2022 Feb; 62(3):472-485. PubMed ID: 35029985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advantages of fine-grained side chain conformer libraries.
    Shetty RP; De Bakker PI; DePristo MA; Blundell TL
    Protein Eng; 2003 Dec; 16(12):963-9. PubMed ID: 14983076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains.
    Pletneva EV; Laederach AT; Fulton DB; Kostic NM
    J Am Chem Soc; 2001 Jul; 123(26):6232-45. PubMed ID: 11427046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico predictions of 3D structures of linear and cyclic peptides with natural and non-proteinogenic residues.
    Beaufays J; Lins L; Thomas A; Brasseur R
    J Pept Sci; 2012 Jan; 18(1):17-24. PubMed ID: 22033979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.
    Duffy FJ; O'Donovan D; Devocelle M; Moran N; O'Connell DJ; Shields DC
    J Chem Inf Model; 2015 Mar; 55(3):600-13. PubMed ID: 25668361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Racemic and quasi-racemic X-ray structures of cyclic disulfide-rich peptide drug scaffolds.
    Wang CK; King GJ; Northfield SE; Ojeda PG; Craik DJ
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11236-41. PubMed ID: 25168664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic peptide structure prediction and design using AlphaFold.
    Rettie SA; Campbell KV; Bera AK; Kang A; Kozlov S; De La Cruz J; Adebomi V; Zhou G; DiMaio F; Ovchinnikov S; Bhardwaj G
    bioRxiv; 2023 Feb; ():. PubMed ID: 36865323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEP-FOLD: an online resource for de novo peptide structure prediction.
    Maupetit J; Derreumaux P; Tuffery P
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W498-503. PubMed ID: 19433514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1.
    Saether O; Craik DJ; Campbell ID; Sletten K; Juul J; Norman DG
    Biochemistry; 1995 Apr; 34(13):4147-58. PubMed ID: 7703226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferred conformations of cyclic Ac-Cys-Pro-Xaa-Cys-NHMe peptides: a model for chain reversal and active site of disulfide oxidoreductase.
    Park HS; Kim C; Kang YK
    Biophys Chem; 2003 Aug; 105(1):89-104. PubMed ID: 12932582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.