These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35505750)

  • 1. Revisiting Pseudo-Haptics for Psychomotor Skills Development in Online Teaching.
    Kapralos B; Quevedo A; Da Silva C; Peisachovich E; Collins KC; Kanev K; Dubrowski A
    Cureus; 2022 Mar; 14(3):e23664. PubMed ID: 35505750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudo-haptics and self-haptics for freehand mid-air text entry in VR.
    Kim W; Xiong S
    Appl Ergon; 2022 Oct; 104():103819. PubMed ID: 35687993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.
    Li M; Sareh S; Xu G; Ridzuan MB; Luo S; Xie J; Wurdemann H; Althoefer K
    PLoS One; 2016; 11(6):e0157681. PubMed ID: 27352234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Psychomotor skills development for Veress needle placement using a virtual reality and haptics-based simulator.
    Di Vece C; Luciano C; De Momi E
    Int J Comput Assist Radiol Surg; 2021 Apr; 16(4):639-647. PubMed ID: 33709241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Student and educator experiences of maternal-child simulation-based learning: a systematic review of qualitative evidence protocol.
    MacKinnon K; Marcellus L; Rivers J; Gordon C; Ryan M; Butcher D
    JBI Database System Rev Implement Rep; 2015 Jan; 13(1):14-26. PubMed ID: 26447004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.
    Prasad MS; Manivannan M; Manoharan G; Chandramohan SM
    J Surg Educ; 2016; 73(5):858-69. PubMed ID: 27267563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survey of Pseudo-Haptics: Haptic Feedback Design and Application Proposals.
    Ujitoko Y; Ban Y
    IEEE Trans Haptics; 2021; 14(4):699-711. PubMed ID: 33950845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.
    van Wegen M; Herder JL; Adelsberger R; Pastore-Wapp M; van Wegen EEH; Bohlhalter S; Nef T; Krack P; Vanbellingen T
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual-haptic integration, action and embodiment in virtual reality.
    McAnally K; Wallis G
    Psychol Res; 2022 Sep; 86(6):1847-1857. PubMed ID: 34709463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haptics: The Science of Touch As a Foundational Pathway to Precision Education and Assessment.
    Perrone KH; Abdelaal AE; Pugh CM; Okamura AM
    Acad Med; 2024 Apr; 99(4S Suppl 1):S84-S88. PubMed ID: 38109654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering the Stiffness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable Haptics.
    Salazar SV; Pacchierotti C; de Tinguy X; Maciel A; Marchal M
    IEEE Trans Haptics; 2020; 13(1):167-174. PubMed ID: 31976907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When Tangibles Become Deformable: Studying Pseudo-Stiffness Perceptual Thresholds in a VR Grasping Task.
    Bouzbib E; Pacchierotti C; Lecuyer A
    IEEE Trans Vis Comput Graph; 2023 Mar; PP():. PubMed ID: 37028356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of an augmented virtual reality and haptic control interface for psychomotor training.
    Kaber D; Tupler LA; Clamann M; Gil GH; Zhu B; Swangnetr M; Jeon W; Zhang Y; Qin X; Ma W; Lee YS
    Assist Technol; 2014; 26(1):51-60. PubMed ID: 24800454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimanual Ultrasound Mid-Air Haptics for Virtual Reality Manipulation.
    Mulot L; Howard T; Gicquel G; Pacchierotti C; Marchal M
    IEEE Trans Vis Comput Graph; 2024 Jun; PP():. PubMed ID: 38905084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Virtual Reality Haptic Femoral Nailing Simulator.
    Racy M; Barrow A; Tomlinson J; Bello F
    J Surg Educ; 2021; 78(3):1013-1023. PubMed ID: 33162363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Findings Favor Haptics Feedback in Virtual Simulation Surgical Education: An Updated Systematic and Scoping Review.
    Azher S; Mills A; He J; Hyjazie T; Tokuno J; Quaiattini A; Harley JM
    Surg Innov; 2024 Jun; 31(3):331-341. PubMed ID: 38486132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited value of haptics in virtual reality laparoscopic cholecystectomy training.
    Thompson JR; Leonard AC; Doarn CR; Roesch MJ; Broderick TJ
    Surg Endosc; 2011 Apr; 25(4):1107-14. PubMed ID: 20872023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CathSym: Device and Method to Bring Haptic Feedback to Urinary Catheterization Training.
    Marjanovic N; Luciano C; Niederberger C
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4908-4911. PubMed ID: 34892308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.