These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35505906)

  • 21. A universal framework for single-cell multi-omics data integration with graph convolutional networks.
    Gao H; Zhang B; Liu L; Li S; Gao X; Yu B
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36929841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PIntMF: Penalized Integrative Matrix Factorization method for multi-omics data.
    Pierre-Jean M; Mauger F; Deleuze JF; Le Floch E
    Bioinformatics; 2022 Jan; 38(4):900-907. PubMed ID: 34849583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bayesian semi-nonnegative matrix tri-factorization to identify pathways associated with cancer phenotypes.
    Park S; Kar N; Cheong JH; Hwang TH
    Pac Symp Biocomput; 2020; 25():427-438. PubMed ID: 31797616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Independent Component Analysis for Unraveling the Complexity of Cancer Omics Datasets.
    Sompairac N; Nazarov PV; Czerwinska U; Cantini L; Biton A; Molkenov A; Zhumadilov Z; Barillot E; Radvanyi F; Gorban A; Kairov U; Zinovyev A
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A cross-species bi-clustering approach to identifying conserved co-regulated genes.
    Sun J; Jiang Z; Tian X; Bi J
    Bioinformatics; 2016 Jun; 32(12):i137-i146. PubMed ID: 27307610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bayesian tensor factorization-drive breast cancer subtyping by integrating multi-omics data.
    Liu Q; Cheng B; Jin Y; Hu P
    J Biomed Inform; 2022 Jan; 125():103958. PubMed ID: 34839017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration.
    Pierre-Jean M; Deleuze JF; Le Floch E; Mauger F
    Brief Bioinform; 2020 Dec; 21(6):2011-2030. PubMed ID: 31792509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Joint analysis of multiple high-dimensional data types using sparse matrix approximations of rank-1 with applications to ovarian and liver cancer.
    Okimoto G; Zeinalzadeh A; Wenska T; Loomis M; Nation JB; Fabre T; Tiirikainen M; Hernandez B; Chan O; Wong L; Kwee S
    BioData Min; 2016; 9():24. PubMed ID: 27478503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kernelized Sparse Bayesian Matrix Factorization.
    Li C; Xie HB; Fan X; Xu RYD; Van Huffel S; Mengersen K
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):391-404. PubMed ID: 32203037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clustering single-cell multimodal omics data with jrSiCKLSNMF.
    Ellis D; Roy A; Datta S
    Front Genet; 2023; 14():1179439. PubMed ID: 37359367
    [No Abstract]   [Full Text] [Related]  

  • 31. Enter the Matrix: Factorization Uncovers Knowledge from Omics.
    Stein-O'Brien GL; Arora R; Culhane AC; Favorov AV; Garmire LX; Greene CS; Goff LA; Li Y; Ngom A; Ochs MF; Xu Y; Fertig EJ
    Trends Genet; 2018 Oct; 34(10):790-805. PubMed ID: 30143323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Logarithmic Norm Regularized Low-Rank Factorization for Matrix and Tensor Completion.
    Chen L; Jiang X; Liu X; Zhou Z
    IEEE Trans Image Process; 2021; 30():3434-3449. PubMed ID: 33651693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Algorithms and Applications to Weighted Rank-one Binary Matrix Factorization.
    Lu H; Chen XI; Shi J; Vaidya J; Atluri V; Hong Y; Huang W
    ACM Trans Manag Inf Syst; 2020 May; 11(2):. PubMed ID: 33251040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structured Matrix Completion with Applications to Genomic Data Integration.
    Cai T; Cai TT; Zhang A
    J Am Stat Assoc; 2016; 111(514):621-633. PubMed ID: 28042188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Network-based integrative clustering of multiple types of genomic data using non-negative matrix factorization.
    Chalise P; Ni Y; Fridley BL
    Comput Biol Med; 2020 Mar; 118():103625. PubMed ID: 31999549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of imputation on correlation: implications for analysis of mass spectrometry data from multiple biological matrices.
    Taylor SL; Ruhaak LR; Kelly K; Weiss RH; Kim K
    Brief Bioinform; 2017 Mar; 18(2):312-320. PubMed ID: 26896791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Unified Bayesian Framework for Bi-overlapping-Clustering Multi-omics Data via Sparse Matrix Factorization.
    Zhou F; He K; Cai JJ; Davidson LA; Chapkin RS; Ni Y
    Stat Biosci; 2023 Dec; 15(3):669-691. PubMed ID: 38179127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.
    Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y
    Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structured Low-Rank Matrix Factorization: Global Optimality, Algorithms, and Applications.
    Haeffele BD; Vidal R
    IEEE Trans Pattern Anal Mach Intell; 2020 Jun; 42(6):1468-1482. PubMed ID: 30794507
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.