These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 35506346)
1. A methodology for the automatic evaluation of data quality and completeness of nanomaterials for risk assessment purposes. Basei G; Rauscher H; Jeliazkova N; Hristozov D Nanotoxicology; 2022 Mar; 16(2):195-216. PubMed ID: 35506346 [TBL] [Abstract][Full Text] [Related]
2. A Weight of Evidence approach to classify nanomaterials according to the EU Classification, Labelling and Packaging Regulation criteria. Basei G; Zabeo A; Rasmussen K; Tsiliki G; Hristozov D NanoImpact; 2021 Oct; 24():100359. PubMed ID: 35559818 [TBL] [Abstract][Full Text] [Related]
3. Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability. Comandella D; Gottardo S; Rio-Echevarria IM; Rauscher H Nanoscale; 2020 Feb; 12(7):4695-4708. PubMed ID: 32049073 [TBL] [Abstract][Full Text] [Related]
4. Development of a systematic method to assess similarity between nanomaterials for human hazard evaluation purposes - lessons learnt. Park MV; Catalán J; Ferraz N; Cabellos J; Vanhauten R; Vázquez-Campos S; Janer G Nanotoxicology; 2018 Sep; 12(7):652-676. PubMed ID: 29732939 [TBL] [Abstract][Full Text] [Related]
6. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques. Lamon L; Asturiol D; Richarz A; Joossens E; Graepel R; Aschberger K; Worth A Part Fibre Toxicol; 2018 Sep; 15(1):37. PubMed ID: 30249272 [TBL] [Abstract][Full Text] [Related]
7. A systematic quality evaluation and review of nanomaterial genotoxicity studies: a regulatory perspective. Siivola KM; Burgum MJ; Suárez-Merino B; Clift MJD; Doak SH; Catalán J Part Fibre Toxicol; 2022 Sep; 19(1):59. PubMed ID: 36104711 [TBL] [Abstract][Full Text] [Related]
8. How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity. Jeliazkova N; Bleeker E; Cross R; Haase A; Janer G; Peijnenburg W; Pink M; Rauscher H; Svendsen C; Tsiliki G; Zabeo A; Hristozov D; Stone V; Wohlleben W NanoImpact; 2022 Jan; 25():100366. PubMed ID: 35559874 [TBL] [Abstract][Full Text] [Related]
9. Assessing the similarity of nanoforms based on the biodegradation of organic surface treatment chemicals. Cross R; Matzke M; Spurgeon D; Diez M; Andres VG; Galvez EC; Esponda MF; Belinga-Desaunay-Nault MF; Lynch I; Jeliazkova N; Svendsen C NanoImpact; 2022 Apr; 26():100395. PubMed ID: 35560293 [TBL] [Abstract][Full Text] [Related]
10. Bayesian based similarity assessment of nanomaterials to inform grouping. Tsiliki G; Ag Seleci D; Zabeo A; Basei G; Hristozov D; Jeliazkova N; Boyles M; Murphy F; Peijnenburg W; Wohlleben W; Stone V NanoImpact; 2022 Jan; 25():100389. PubMed ID: 35559895 [TBL] [Abstract][Full Text] [Related]
11. A weight of evidence approach for hazard screening of engineered nanomaterials. Hristozov DR; Zabeo A; Foran C; Isigonis P; Critto A; Marcomini A; Linkov I Nanotoxicology; 2014 Feb; 8(1):72-87. PubMed ID: 23153309 [TBL] [Abstract][Full Text] [Related]
12. Grouping of nanomaterials to read-across hazard endpoints: a review. Lamon L; Aschberger K; Asturiol D; Richarz A; Worth A Nanotoxicology; 2019 Feb; 13(1):100-118. PubMed ID: 30182776 [TBL] [Abstract][Full Text] [Related]
13. An integrated approach to testing and assessment of high aspect ratio nanomaterials and its application for grouping based on a common mesothelioma hazard. Murphy F; Dekkers S; Braakhuis H; Ma-Hock L; Johnston H; Janer G; di Cristo L; Sabella S; Jacobsen NR; Oomen AG; Haase A; Fernandes T; Stone V NanoImpact; 2021 Apr; 22():100314. PubMed ID: 35559971 [TBL] [Abstract][Full Text] [Related]
14. Environmental Risk Assessment of Nanomaterials in the Light of New Obligations Under the REACH Regulation: Which Challenges Remain and How to Approach Them? Schwirn K; Voelker D; Galert W; Quik J; Tietjen L Integr Environ Assess Manag; 2020 Sep; 16(5):706-717. PubMed ID: 32175661 [TBL] [Abstract][Full Text] [Related]
15. How should the completeness and quality of curated nanomaterial data be evaluated? Marchese Robinson RL; Lynch I; Peijnenburg W; Rumble J; Klaessig F; Marquardt C; Rauscher H; Puzyn T; Purian R; Åberg C; Karcher S; Vriens H; Hoet P; Hoover MD; Hendren CO; Harper SL Nanoscale; 2016 May; 8(19):9919-43. PubMed ID: 27143028 [TBL] [Abstract][Full Text] [Related]
16. Your Spreadsheets Can Be FAIR: A Tool and FAIRification Workflow for the eNanoMapper Database. Kochev N; Jeliazkova N; Paskaleva V; Tancheva G; Iliev L; Ritchie P; Jeliazkov V Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32987901 [TBL] [Abstract][Full Text] [Related]
17. A critical appraisal of existing concepts for the grouping of nanomaterials. Arts JH; Hadi M; Keene AM; Kreiling R; Lyon D; Maier M; Michel K; Petry T; Sauer UG; Warheit D; Wiench K; Landsiedel R Regul Toxicol Pharmacol; 2014 Nov; 70(2):492-506. PubMed ID: 25108058 [TBL] [Abstract][Full Text] [Related]
18. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Yan X; Sedykh A; Wang W; Yan B; Zhu H Nat Commun; 2020 May; 11(1):2519. PubMed ID: 32433469 [TBL] [Abstract][Full Text] [Related]
19. eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment. Hastings J; Jeliazkova N; Owen G; Tsiliki G; Munteanu CR; Steinbeck C; Willighagen E J Biomed Semantics; 2015; 6():10. PubMed ID: 25815161 [TBL] [Abstract][Full Text] [Related]
20. Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms. Loosli F; Rasmussen K; Rauscher H; Cross RK; Bossa N; Peijnenburg W; Arts J; Matzke M; Svendsen C; Spurgeon D; Clausen PA; Ruggiero E; Wohlleben W; von der Kammer F NanoImpact; 2022 Jan; 25():100375. PubMed ID: 35559881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]