These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35506905)

  • 1. Decomposition of multifunctionalized α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with diols in liquid phases.
    Endo Y; Sakamoto Y; Kajii Y; Enami S
    Phys Chem Chem Phys; 2022 May; 24(19):11562-11572. PubMed ID: 35506905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposition mechanism of α-alkoxyalkyl-hydroperoxides in the liquid phase: temperature dependent kinetics and theoretical calculations.
    Hu M; Chen K; Qiu J; Lin YH; Tonokura K; Enami S
    Environ Sci Atmos; 2022 Mar; 2(2):241-251. PubMed ID: 35419522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous-phase fates of α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with alcohols.
    Hu M; Qiu J; Tonokura K; Enami S
    Phys Chem Chem Phys; 2021 Mar; 23(8):4605-4614. PubMed ID: 33620039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fates of Organic Hydroperoxides in Atmospheric Condensed Phases.
    Enami S
    J Phys Chem A; 2021 Jun; 125(21):4513-4523. PubMed ID: 33904735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature Dependence of Aqueous-Phase Decomposition of α-Hydroxyalkyl-Hydroperoxides.
    Hu M; Chen K; Qiu J; Lin YH; Tonokura K; Enami S
    J Phys Chem A; 2020 Dec; 124(49):10288-10295. PubMed ID: 33231452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-Catalyzed Decomposition of α-Hydroxyalkyl-Hydroperoxides in Water.
    Qiu J; Tonokura K; Enami S
    Environ Sci Technol; 2020 Sep; 54(17):10561-10569. PubMed ID: 32786584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of Monoterpene-Derived α-Hydroxyalkyl-Hydroperoxides in Aqueous Organic Media: Relevance to the Fate of Hydroperoxides in Aerosol Particle Phases.
    Qiu J; Liang Z; Tonokura K; Colussi AJ; Enami S
    Environ Sci Technol; 2020 Apr; 54(7):3890-3899. PubMed ID: 32131591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Metal Ions on Aqueous-Phase Decomposition of α-Hydroxyalkyl-Hydroperoxides Derived from Terpene Alcohols.
    Hu M; Tonokura K; Morino Y; Sato K; Enami S
    Environ Sci Technol; 2021 Oct; 55(19):12893-12901. PubMed ID: 34525797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.
    Percival CJ; Welz O; Eskola AJ; Savee JD; Osborn DL; Topping DO; Lowe D; Utembe SR; Bacak A; McFiggans G; Cooke MC; Xiao P; Archibald AT; Jenkin ME; Derwent RG; Riipinen I; Mok DW; Lee EP; Dyke JM; Taatjes CA; Shallcross DE
    Faraday Discuss; 2013; 165():45-73. PubMed ID: 24600996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pH on Interfacial Ozonolysis of α-Terpineol.
    Qiu J; Ishizuka S; Tonokura K; Sato K; Inomata S; Enami S
    J Phys Chem A; 2019 Aug; 123(32):7148-7155. PubMed ID: 31329444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of Terpenoid-Derived Secondary Ozonides in Aqueous Organic Media.
    Qiu J; Fujita M; Tonokura K; Enami S
    J Phys Chem A; 2022 Aug; 126(32):5386-5397. PubMed ID: 35921086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2020 Jun; 22(24):13756-13763. PubMed ID: 32538397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphase Ozonolysis of Aqueous α-Terpineol.
    Leviss DH; Van Ry DA; Hinrichs RZ
    Environ Sci Technol; 2016 Nov; 50(21):11698-11705. PubMed ID: 27680201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct aqueous photochemistry of methylglyoxal and its effect on sulfate formation.
    Tan J; Kong L; Wang Y; Liu B; An Y; Xia L; Lu Y; Li Q; Wang L
    Sci Total Environ; 2024 May; 924():171519. PubMed ID: 38460698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second-Order Kinetic Rate Coefficients for the Aqueous-Phase Hydroxyl Radical (OH) Oxidation of Isoprene-Derived Secondary Organic Aerosol Compounds at 298 K.
    Abellar KA; Cope JD; Nguyen TB
    Environ Sci Technol; 2021 Oct; 55(20):13728-13736. PubMed ID: 34587441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-Assisted Ozonolysis of Alkenes in Water: Mitigation of Frothing Using Coolade as a Low-Foaming Surfactant.
    Buntasana S; Hayashi J; Saetung P; Klumphu P; Vilaivan T; Padungros P
    J Org Chem; 2022 May; 87(10):6525-6540. PubMed ID: 35133162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide Formation from Aqueous Reactions of Biogenic Secondary Organic Aerosols.
    Wei J; Fang T; Wong C; Lakey PSJ; Nizkorodov SA; Shiraiwa M
    Environ Sci Technol; 2021 Jan; 55(1):260-270. PubMed ID: 33352036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of gas-phase ozonolysis of sabinene in the atmosphere.
    Wang L; Wang L
    Phys Chem Chem Phys; 2017 Sep; 19(35):24209-24218. PubMed ID: 28848955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of stabilized criegee intermediates from ozonolysis of limonene with water: ab initio and DFT study.
    Jiang L; Lan R; Xu YS; Zhang WJ; Yang W
    Int J Mol Sci; 2013 Mar; 14(3):5784-805. PubMed ID: 23481640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the acetaldehyde oxide Criegee intermediate reaction network in the ozone-assisted low-temperature oxidation of
    Conrad AR; Hansen N; Jasper AW; Thomason NK; Hidaldo-Rodrigues L; Treshock SP; Popolan-Vaida DM
    Phys Chem Chem Phys; 2021 Oct; 23(41):23554-23566. PubMed ID: 34651147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.