These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3550694)

  • 21. Yeast ochre suppressor SUQ5-ol is an altered tRNA Ser UCA.
    Waldron C; Cox BS; Wills N; Gesteland RF; Piper PW; Colby D; Guthrie C
    Nucleic Acids Res; 1981 Jul; 9(13):3077-88. PubMed ID: 7024909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-range conformational transition in yeast tRNAPhe, induced by the Y-base removal and detected by chloroacetaldehyde modification.
    Krzyzosiak WJ; Ciesiołka J
    Nucleic Acids Res; 1983 Oct; 11(19):6913-21. PubMed ID: 6356038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of yeast tRNAAsp.
    Moras D; Comarmond MB; Fischer J; Weiss R; Thierry JC; Ebel JP; Giegé R
    Nature; 1980 Dec; 288(5792):669-74. PubMed ID: 7005687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro methylation of yeast tRNAAsp by rat brain cortical tRNA-(adenine-1) methyltransferase.
    Salas CE; Dirheimer G
    Nucleic Acids Res; 1979 Mar; 6(3):1123-33. PubMed ID: 375195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Conformation and Raman spectra of the transfer ribonucleic acid, tRNAAsp].
    Huong PV; Giege R
    Biochimie; 1981; 63(11-12):921-2. PubMed ID: 6916608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. E. coli initiator tRNA analogs with different nucleotides in the discriminator base position.
    Uemura H; Imai M; Ohtsuka E; Ikehara M; Söll D
    Nucleic Acids Res; 1982 Oct; 10(20):6531-9. PubMed ID: 6294608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleotide sequences of two aspartic acid tRNAs from rat liver and rat ascites hepatoma.
    Kuchino Y; Shindo-Okada N; Ando N; Watanabe S; Nishimura S
    J Biol Chem; 1981 Sep; 256(17):9059-62. PubMed ID: 6927846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nuclear Overhauser effect study and assignment of D stem and reverse-Hoogsteen base pair proton resonances in yeast tRNAAsp.
    Roy S; Redfield AG
    Nucleic Acids Res; 1981 Dec; 9(24):7073-83. PubMed ID: 6278454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Enzymatic synthesis of tRNA fragments].
    Zhenodarova SM; Kliagina VP; Sedel'nikova EA; Khabarova MI
    Mol Biol (Mosk); 1984; 18(5):1181-93. PubMed ID: 6390171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and evolution of a mouse tRNA gene cluster encoding tRNAAsp, tRNAGly and tRNAGlu and an unlinked, solitary gene encoding tRNAAsp.
    Looney JE; Harding JD
    Nucleic Acids Res; 1983 Dec; 11(24):8761-75. PubMed ID: 6324100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the constant uridine in binding of yeast tRNAPhe anticodon arm to 30S ribosomes.
    Uhlenbeck OC; Lowary PT; Wittenberg WL
    Nucleic Acids Res; 1982 Jun; 10(11):3341-52. PubMed ID: 7048255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleotide sequence of the mitochondrial genes coding for tRNAglyGGR and tRNAvalGUR.
    Miller DL; Sigurdson C; Martin NC; Donelson JE
    Nucleic Acids Res; 1980 Mar; 8(6):1435-42. PubMed ID: 6253935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-function analysis of the kinase-CPD domain of yeast tRNA ligase (Trl1) and requirements for complementation of tRNA splicing by a plant Trl1 homolog.
    Wang LK; Schwer B; Englert M; Beier H; Shuman S
    Nucleic Acids Res; 2006; 34(2):517-27. PubMed ID: 16428247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Synthesis of fragments of the D-branch of yeast valine tRNA1 and their analogs].
    Zhenodarova SM; Kliagina VP; Sedel'nikova EA; Smol'ianinova OA
    Bioorg Khim; 1986 Feb; 12(2):220-9. PubMed ID: 3633726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complementary-addressed (sequence-specific) modification of nucleic acids.
    Knorre DG; Vlassov VV
    Prog Nucleic Acid Res Mol Biol; 1985; 32():291-320. PubMed ID: 2418466
    [No Abstract]   [Full Text] [Related]  

  • 37. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of non-coding DNA sequences in transcription and processing of a yeast tRNA.
    Raymond GJ; Johnson JD
    Nucleic Acids Res; 1983 Sep; 11(17):5969-88. PubMed ID: 6351012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on transfer ribonucleic acids and related compounds. XL. Synthesis of an eicosaribonucleotide corresponding to residues 35-54 of tRNAfMet from E. coli.
    Ohtsuka E; Fujiyama K; Ikehara M
    Nucleic Acids Res; 1981 Jul; 9(14):3503-22. PubMed ID: 7024916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of a yeast non-initiating methionine-tRNA gene.
    Olah J; Feldmann H
    Nucleic Acids Res; 1980 May; 8(9):1975-86. PubMed ID: 6253952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.